4 resultados para Giant freshwater prawn

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the mid-long-term after a nuclear accident, the contamination of drinking water sources, fish and other aquatic foodstuffs, irrigation supplies and people?s exposure during recreational activities may create considerable public concern, even though dose assessment may in certain situations indicate lesser importance than for other sources, as clearly experienced in the aftermath of past accidents. In such circumstances there are a number of available countermeasure options, ranging from specific chemical treatment of lakes to bans on fish ingestion or on the use of water for crop irrigation. The potential actions can be broadly grouped into four main categories, chemical, biological, physical and social. In some cases a combination of actions may be the optimal strategy and a decision support system (DSS) like MOIRA-PLUS can be of great help to optimise a decision. A further option is of course not to take any remedial actions, although this may also have significant socio-economic repercussions which should be adequately evaluated. MOIRA-PLUS is designed to allow for a reliable assessment of the long-term evolution of the radiological situation and of feasible alternative rehabilitation strategies, including an objective evaluation of their social, economic and ecological impacts in a rational and comprehensive manner. MOIRA-PLUS also features a decision analysis methodology, making use of multi-attribute analysis, which can take into account the preferences and needs of different types of stakeholders. The main functions and elements of the system are described summarily. Also the conclusions from end-user?s experiences with the system are discussed, including exercises involving the organizations responsible for emergency management and the affected services, as well as different local and regional stakeholders. MOIRAPLUS has proven to be a mature system, user friendly and relatively easy to set up. It can help to better decisionmaking by enabling a realistic evaluation of the complete impacts of possible recovery strategies. Also, the interaction with stakeholders has allowed identifying improvements of the system that have been recently implemented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Root-knot nematodes (RKNs) induce giant cells (GCs) from root vascular cells inside the galls. Accompanying molecular changes as a function of infection time and across different species, and their functional impact, are still poorly understood. Thus, the transcriptomes of tomato galls and laser capture microdissected (LCM) GCs over the course of parasitism were compared with those of Arabidopsis, and functional analysis of a repressed gene was performed. Microarray hybridization with RNA from galls and LCM GCs, infection-reproduction tests and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) transcriptional profiles in susceptible and resistant (Mi-1) lines were performed in tomato. Tomato GC-induced genes include some possibly contributing to the epigenetic control of GC identity. GC-repressed genes are conserved between tomato and Arabidopsis, notably those involved in lignin deposition. However, genes related to the regulation of gene expression diverge, suggesting that diverse transcriptional regulators mediate common responses leading to GC formation in different plant species. TPX1, a cell wall peroxidase specifically involved in lignification, was strongly repressed in GCs/galls, but induced in a nearly isogenic Mi-1 resistant line on nematode infection. TPX1 overexpression in susceptible plants hindered nematode reproduction and GC expansion. Time-course and cross-species comparisons of gall and GC transcriptomes provide novel insights pointing to the relevance of gene repression during RKN establishment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growing energy crops on marginal land has been promoted as a way of ensuring that biomass production involves an acceptable and sustainable use of land. Saline and saline-prone agricultural lands represent an opportunity for growing energy crops avoiding the displacement of food production and contributing to restoration of degraded land. Giant reed (Arundo donax L.) is a perennial grass that has been proposed as a promising energy crop for lignocellulosic biomass production while its tolerance to salinity has been proved. In this work, the identification of surplus saline lands that could be irrigated with saline waters for growing tolerant-energy crops (giant reed) in the mainland of Spain and the assessment of the agronomically attainable yield in these limiting growing conditions were undertaken. To this purpose, a GIS analysis was conducted using geodatabases related to saline areas, agro-climatic conditions, irrigation water requirements, agricultural land availability, restrictions regarding the range of electrical conductivity tolerated by the crop, competition with agro-food crops and irrigation water provisions. According to the approach developed, the irrigated and saline agricultural area available and suitable for biomass production from giant reed amounted up to 34 412 ha. The agronomically attainable yield in these limiting conditions was estimated at 12.7 – 22.2 t dm ha−1 yr−1 and the potential production of lignocellulosic biomass, 597 338 t dm yr−1. The methodology followed in this study can be applied to other target regions; it allows the identification of this type of marginal lands, where salinity-tolerant plant species could be grown for bioenergy purposes, avoiding competition with agro-food crops, and where soil restoration measurements should be undertaken.