7 resultados para Geometric structure
em Universidad Politécnica de Madrid
Resumo:
Transition state theory is a central cornerstone in reaction dynamics. Its key step is the identification of a dividing surface that is crossed only once by all reactive trajectories. This assumption is often badly violated, especially when the reactive system is coupled to an environment. The calculations made in this way then overestimate the reaction rate and the results depend critically on the choice of the dividing surface. In this Communication, we study the phase space of a stochastically driven system close to an energetic barrier in order to identify the geometric structure unambiguously determining the reactive trajectories, which is then incorporated in a simple rate formula for reactions in condensed phase that is both independent of the dividing surface and exact.
Resumo:
These slides present several 3-D reconstruction methods to obtain the geometric structure of a scene that is viewed by multiple cameras. We focus on the combination of the geometric modeling in the image formation process with the use of standard optimization tools to estimate the characteristic parameters that describe the geometry of the 3-D scene. In particular, linear, non-linear and robust methods to estimate the monocular and epipolar geometry are introduced as cornerstones to generate 3-D reconstructions with multiple cameras. Some examples of systems that use this constructive strategy are Bundler, PhotoSynth, VideoSurfing, etc., which are able to obtain 3-D reconstructions with several hundreds or thousands of cameras. En esta presentación se tratan varios métodos de reconstrucción 3-D para la obtención de la estructura geométrica de una escena que es visualizada por varias cámaras. Se enfatiza la combinación de modelado geométrico del proceso de formación de la imagen con el uso de herramientas estándar de optimización para estimar los parámetros característicos que describen la geometría de la escena 3-D. En concreto, se presentan métodos de estimación lineales, no lineales y robustos de las geometrías monocular y epipolar como punto de partida para generar reconstrucciones con tres o más cámaras. Algunos ejemplos de sistemas que utilizan este enfoque constructivo son Bundler, PhotoSynth, VideoSurfing, etc., los cuales, en la práctica pueden llegar a reconstruir una escena con varios cientos o miles de cámaras.
Resumo:
In a large number of physical, biological and environmental processes interfaces with high irregular geometry appear separating media (phases) in which the heterogeneity of constituents is present. In this work the quantification of the interplay between irregular structures and surrounding heterogeneous distributions in the plane is made For a geometric set image and a mass distribution (measure) image supported in image, being image, the mass image gives account of the interplay between the geometric structure and the surrounding distribution. A computation method is developed for the estimation and corresponding scaling analysis of image, being image a fractal plane set of Minkowski dimension image and image a multifractal measure produced by random multiplicative cascades. The method is applied to natural and mathematical fractal structures in order to study the influence of both, the irregularity of the geometric structure and the heterogeneity of the distribution, in the scaling of image. Applications to the analysis and modeling of interplay of phases in environmental scenarios are given.
Resumo:
En esta memoria estudiamos problemas geométricos relacionados con la Localización de Servicios. La Localización de Servicios trata de la ubicación de uno o más recursos (radares, almacenes, pozos exploradores de petróleo, etc) de manera tal que se optimicen ciertos objetivos (servir al mayor número de usuarios posibles, minimizar el coste de transporte, evitar la contaminación de poblaciones cercanas, etc). La resolución de este tipo de problemas de la vida real da lugar a problemas geométricos muy interesantes. En el planteamiento geométrico de muchos de estos problemas los usuarios potenciales del servicio son representados por puntos mientras que los servicios están representados por la figura geométrica que mejor se adapta al servicio prestado: un anillo para el caso de radares, antenas de radio y televisión, aspersores, etc, una cuña si el servicio que se quiere prestar es de iluminación, por ejemplo, etc. Estas son precisamente las figuras geométricas con las que hemos trabajado. En nuestro caso el servicio será sólo uno y el planteamiento formal del problema es como sigue: dado un anillo o una cuña de tamaño fijo y un conjunto de n puntos en el plano, hallar cuál tiene que ser la posición del mismo para que se cubra la mayor cantidad de puntos. Para resolver estos problemas hemos utilizado arreglos de curvas en el plano. Los arreglos son una estructura geométrica bien conocida y estudiada dentro de la Geometría Computacional. Nosotros nos hemos centrado en los arreglos de curvas de Jordán no acotadas que se intersectan dos a dos en a lo sumo dos puntos, ya que estos fueron los arreglos con los que hemos tenido que tratar para la resolución de los problemas. De entre las diferentes técnicas para la construcción de arreglos hemos estudiado el método incremental, ya que conduce a algoritmos que son en general más sencillos desde el punto de vista de la codificación. Como resultado de este estudio hemos obtenido nuevas cotas que mejoran la complejidad del tiempo de construcción de estos arreglos con algoritmos incrementales. La nueva cota Ο(n λ3(n)) supone una mejora respecto a la cota conocida hasta el momento: Ο(nλ4(n)).También hemos visto que en ciertas condiciones estos arreglos pueden construirse en tiempo Ο(nλ2(n)), que es la cota óptima para la construcción de estos arreglos. Restringiendo el estudio a curvas específicas, hemos obtenido que los arreglos de n circunferencias de k radios diferentes pueden construirse en tiempo Ο(n2 min(log(k),α(n))), resultado válido también para arreglos de elipses, parábolas o hipérbolas de tamaños diferentes cuando las figuras son todas isotéticas.---ABSTRACT--- In this work some geometric problems related with facility location are studied. Facility location deals with location of one or more facilities (radars, stores, oil wells, etc.) in such way that some objective functions are to be optimized (to cover the maximum number of users, to minimize the cost of transportation, to avoid pollution in the nearby cities, etc.). These kind of real world problems give rise to very interesting geometrical problems. In the geometric version of many of these problems, users are represented as points while facilities are represented as different geometric objects depending on the shape of the corresponding facility: an annulus in the case of radars, radio or TV antennas, agricultural spraying devices, etc. A wedge in many illumination or surveillance applications. These two shapes are the geometric figures considered in this Thesis. The formal setting of the problem is the following: Given an annulus or a wedge of fixed size and a set of n points in the plane, locate the best position for the annulus or the wedge so that it covers as many points as possible. Those problems are solved by using arrangements of curves in the plane. Arrangements are a well known geometric structure. Here one deals with arrangements of unbounded Jordan curves which intersect each other in at most two points. Among the different techniques for computing arrangements, incremental method is used because it is easier for implementations. New time complexity upper bounds has been obtained in this Thesis for the construction of such arrangements by means of incremental algorithms. New upper bound is Ο(nλ3(n)) which improves the best known up to now Ο(nλ4(n)). It is shown also that sometimes this arrangements can be constructed in Ο(nλ2(n)), which is the optimal bound for constructing these arrangements. With respect to specific type of curves, one gives an Ο(n2 min(log(k),α(n))), algorithm that constructs the arrangement of a set of n circles of k different radii. This algorithm is also valid for ellipses parabolas or hyperbolas of k different sizes when all of them are isothetic.
Resumo:
We report synchronization of networked excitable nodes embedded in a metric space, where the connectivity properties are mostly determined by the distance between units. Such a high clustered structure, combined with the lack of long-range connections, prevents full synchronization and yields instead the emergence of synchronization waves. We show that this regime is optimal for information transmission through the system, as it enhances the options of reconstructing the topology from the dynamics. Measurements of topological and functional centralities reveal that the wave-synchronization state allows detection of the most structurally relevant nodes from a single observation of the dynamics, without any a priori information on the model equations ruling the evolution of the ensemble
Resumo:
Motivated by the observation of spiral patterns in a wide range of physical, chemical, and biological systems, we present an automated approach that aims at characterizing quantitatively spiral-like elements in complex stripelike patterns. The approach provides the location of the spiral tip and the size of the spiral arms in terms of their arc length and their winding number. In addition, it yields the number of pattern components (Betti number of order 1), as well as their size and certain aspects of their shape. We apply the method to spiral defect chaos in thermally driven Rayleigh- Bénard convection and find that the arc length of spirals decreases monotonically with decreasing Prandtl number of the fluid and increasing heating. By contrast, the winding number of the spirals is nonmonotonic in the heating. The distribution function for the number of spirals is significantly narrower than a Poisson distribution. The distribution function for the winding number shows approximately an exponential decay. It depends only weakly on the heating, but strongly on the Prandtl number. Large spirals arise only for larger Prandtl numbers. In this regime the joint distribution for the spiral length and the winding number exhibits a three-peak structure, indicating the dominance of Archimedean spirals of opposite sign and relatively straight sections. For small Prandtl numbers the distribution function reveals a large number of small compact pattern components.
Resumo:
An AH (affine hypersurface) structure is a pair comprising a projective equivalence class of torsion-free connections and a conformal structure satisfying a compatibility condition which is automatic in two dimensions. They generalize Weyl structures, and a pair of AH structures is induced on a co-oriented non-degenerate immersed hypersurface in flat affine space. The author has defined for AH structures Einstein equations, which specialize on the one hand to the usual Einstein Weyl equations and, on the other hand, to the equations for affine hyperspheres. Here these equations are solved for Riemannian signature AH structures on compact orientable surfaces, the deformation spaces of solutions are described, and some aspects of the geometry of these structures are related. Every such structure is either Einstein Weyl (in the sense defined for surfaces by Calderbank) or is determined by a pair comprising a conformal structure and a cubic holomorphic differential, and so by a convex flat real projective structure. In the latter case it can be identified with a solution of the Abelian vortex equations on an appropriate power of the canonical bundle. On the cone over a surface of genus at least two carrying an Einstein AH structure there are Monge-Amp`ere metrics of Lorentzian and Riemannian signature and a Riemannian Einstein K"ahler affine metric. A mean curvature zero spacelike immersed Lagrangian submanifold of a para-K"ahler four-manifold with constant para-holomorphic sectional curvature inherits an Einstein AH structure, and this is used to deduce some restrictions on such immersions.