2 resultados para Geografía medica

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

El artículo estudia los cambios en el trazado de la ciudad colonial chilena en función de los condicionantes geográficos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La estimación de la biomasa de la vegetación terrestre en bosque tropical no sólo es un área de investigación en rápida expansión, sino también es un tema de gran interés para reducir las emisiones de carbono asociadas a la deforestación y la degradación forestal (REDD+). Las estimaciones de densidad de carbono sobre el suelo (ACD) en base a inventarios de campo y datos provenientes de sensores aerotransportados, en especial con sensores LiDAR, han conducido a un progreso sustancial en el cartografiado a gran escala de las reservas de carbono forestal. Sin embargo, estos mapas de carbono tienen incertidumbres considerables, asociadas generalmente al proceso de calibración del modelo de regresión utilizado para producir los mapas. En esta tesis se establece una metodología para la calibración y validación de un modelo general de estimación de ACD usando LiDAR en un sector del Parque Nacional Yasuní en Ecuador. En el proceso de calibración del modelo se considera el tamaño y la ubicación de las parcelas, la influencia de la topografía y la distribución espacial de la biomasa. Para el análisis de los datos se utilizan técnicas geoestadísticas en combinación con variables geomorfométricas derivadas de datos LiDAR, y se propone un esquema de muestreo estratificado por posiciones topográficas (valle, ladera y cima). La validación del modelo general para toda la zona de estudio presentó valores de RMSE = 5.81 Mg C ha-1, R2 = 0.94 y sesgo = 0.59, mientras que, al considerar las posiciones topográficas, el modelo presentó valores de RMSE = 1.67 Mg C ha-1, R2 = 0.98 y sesgo = 0.23 para el valle; RMSE = 3.13 Mg C ha-1, R2 = 0.98 y sesgo = - 0.34 para la ladera; y RMSE = 2.33 Mg C ha-1, R2 = 0.97 y sesgo = 0.74 para la cima. Los resultados obtenidos demuestran que la metodología de muestreo estratificado por posiciones topográficas propuesto, permite calibrar de manera efectiva el modelo general con las estimaciones de ACD en campo, logrando reducir el RMSE y el sesgo. Los resultados muestran el potencial de los datos LiDAR para caracterizar la estructura vertical de la vegetación en un bosque altamente diverso, permitiendo realizar estimaciones precisas de ACD, y conocer patrones espaciales continuos de la distribución de la biomasa aérea y del contenido de carbono en la zona de estudio. ABSTRACT Estimating biomass of terrestrial vegetation in tropical forest is not only a rapidly expanding research area, but also a subject of tremendous interest for reducing carbon emissions associated with deforestation and forest degradation (REDD+). The aboveground carbon density estimates (ACD) based on field inventories and airborne sensors, especially LiDAR sensors have led to a substantial progress in large-scale mapping of forest carbon stocks. However, these carbon maps have considerable uncertainties generally associated with the calibration of the regression model used to produce these maps. This thesis establishes a methodology for calibrating and validating a general ACD estimation model using LiDAR in Ecuador´s Yasuní National Park. The size and location of the plots are considered in the model calibration phase as well as the influence of topography and spatial distribution of biomass. Geostatistical analysis techniques are used in combination with geomorphometrics variables derived from LiDAR data, and then a stratified sampling scheme considering topographic positions (valley, slope and ridge) is proposed. The validation of the general model for the study area showed values of RMSE = 5.81 Mg C ha-1, R2 = 0.94 and bias = 0.59, while considering the topographical positions, the model showed values of RMSE = 1.67 Mg C ha-1, R2 = 0.98 and bias = 0.23 for the valley; RMSE = 3.13 Mg C ha-1, R2 = 0.98 and bias = - 0.34 for the slope; and RMSE = 2.33 Mg C ha-1, R2 = 0.97 and bias = 0.74 for the ridge. The results show that the stratified sampling methodology taking into account topographic positions, effectively calibrates the general model with field estimates of ACD, reducing RMSE and bias. The results show the potential of LiDAR data to characterize the vertical structure of vegetation in a highly diverse forest, allowing accurate estimates of ACD, and knowing continuous spatial patterns of biomass distribution and carbon stocks in the study area.