3 resultados para Generalized Pareto Distribution

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this work is to provide a description of the heavy rainfall phenomenon on statistical tools from a Spanish region. We want to quantify the effect of the climate change to verify the rapidity of its evolution across the variation of the probability distributions. Our conclusions have special interest for the agrarian insurances, which may make estimates of costs more realistically. In this work, the analysis mainly focuses on: The distribution of consecutive days without rain for each gauge stations and season. We estimate density Kernel functions and Generalized Pareto Distribution (GPD) for a network of station from the Ebro River basin until a threshold value u. We can establish a relation between distributional parameters and regional characteristics. Moreover we analyze especially the tail of the probability distribution. These tails are governed by law of power means that the number of events n can be expressed as the power of another quantity x : n(x) = x? . ? can be estimated as the slope of log-log plot the number of events and the size. The most convenient way to analyze n(x) is using the empirical probability distribution. Pr(X mayor que x) ? x-?. The distribution of rainfall over percentile of order 0.95 from wet days at the seasonal scale and in a yearly scale with the same treatment of tails than in the previous section.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The statistical distributions of different software properties have been thoroughly studied in the past, including software size, complexity and the number of defects. In the case of object-oriented systems, these distributions have been found to obey a power law, a common statistical distribution also found in many other fields. However, we have found that for some statistical properties, the behavior does not entirely follow a power law, but a mixture between a lognormal and a power law distribution. Our study is based on the Qualitas Corpus, a large compendium of diverse Java-based software projects. We have measured the Chidamber and Kemerer metrics suite for every file of every Java project in the corpus. Our results show that the range of high values for the different metrics follows a power law distribution, whereas the rest of the range follows a lognormal distribution. This is a pattern typical of so-called double Pareto distributions, also found in empirical studies for other software properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a new multi-objective estimation of distribution algorithm (EDA) based on joint modeling of objectives and variables. This EDA uses the multi-dimensional Bayesian network as its probabilistic model. In this way it can capture the dependencies between objectives, variables and objectives, as well as the dependencies learnt between variables in other Bayesian network-based EDAs. This model leads to a problem decomposition that helps the proposed algorithm to find better trade-off solutions to the multi-objective problem. In addition to Pareto set approximation, the algorithm is also able to estimate the structure of the multi-objective problem. To apply the algorithm to many-objective problems, the algorithm includes four different ranking methods proposed in the literature for this purpose. The algorithm is applied to the set of walking fish group (WFG) problems, and its optimization performance is compared with an evolutionary algorithm and another multi-objective EDA. The experimental results show that the proposed algorithm performs significantly better on many of the problems and for different objective space dimensions, and achieves comparable results on some compared with the other algorithms.