2 resultados para Generalised Additive Model

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider a groupdecision-making problem within multi-attribute utility theory, in which the relative importance of decisionmakers (DMs) is known and their preferences are represented by means of an additive function. We allow DMs to provide veto values for the attribute under consideration and build veto and adjust functions that are incorporated into the additive model. Veto functions check whether alternative performances are within the respective veto intervals, making the overall utility of the alternative equal to 0, where as adjust functions reduce the utilty of the alternative performance to match the preferences of other DMs. Dominance measuring methods are used to account for imprecise information in the decision-making scenario and to derive a ranking of alternatives for each DM. Specifically, ordinal information about the relative importance of criteria is provided by each DM. Finally, an extension of Kemeny's method is used to aggregate the alternative rankings from the DMs accounting for the irrelative importance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with the problem of efficiently tracking 3D objects in sequences of images. We tackle the efficient 3D tracking problem by using direct image registration. This problem is posed as an iterative optimization procedure that minimizes a brightness error norm. We review the most popular iterative methods for image registration in the literature, turning our attention to those algorithms that use efficient optimization techniques. Two forms of efficient registration algorithms are investigated. The first type comprises the additive registration algorithms: these algorithms incrementally compute the motion parameters by linearly approximating the brightness error function. We centre our attention on Hager and Belhumeur’s factorization-based algorithm for image registration. We propose a fundamental requirement that factorization-based algorithms must satisfy to guarantee good convergence, and introduce a systematic procedure that automatically computes the factorization. Finally, we also bring out two warp functions to register rigid and nonrigid 3D targets that satisfy the requirement. The second type comprises the compositional registration algorithms, where the brightness function error is written by using function composition. We study the current approaches to compositional image alignment, and we emphasize the importance of the Inverse Compositional method, which is known to be the most efficient image registration algorithm. We introduce a new algorithm, the Efficient Forward Compositional image registration: this algorithm avoids the necessity of inverting the warping function, and provides a new interpretation of the working mechanisms of the inverse compositional alignment. By using this information, we propose two fundamental requirements that guarantee the convergence of compositional image registration methods. Finally, we support our claims by using extensive experimental testing with synthetic and real-world data. We propose a distinction between image registration and tracking when using efficient algorithms. We show that, depending whether the fundamental requirements are hold, some efficient algorithms are eligible for image registration but not for tracking.