3 resultados para Gender and Sexuality

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Durante el proceso de producción de voz, los factores anatómicos, fisiológicos o psicosociales del individuo modifican los órganos resonadores, imprimiendo en la voz características particulares. Los sistemas ASR tratan de encontrar los matices característicos de una voz y asociarlos a un individuo o grupo. La edad y sexo de un hablante son factores intrínsecos que están presentes en la voz. Este trabajo intenta diferenciar esas características, aislarlas y usarlas para detectar el género y la edad de un hablante. Para dicho fin, se ha realizado el estudio y análisis de las características basadas en el pulso glótico y el tracto vocal, evitando usar técnicas clásicas (como pitch y sus derivados) debido a las restricciones propias de dichas técnicas. Los resultados finales de nuestro estudio alcanzan casi un 100% en reconocimiento de género mientras en la tarea de reconocimiento de edad el reconocimiento se encuentra alrededor del 80%. Parece ser que la voz queda afectada por el género del hablante y las hormonas, aunque no se aprecie en la audición. ABSTRACT Particular elements of the voice are printed during the speech production process and are related to anatomical and physiological factors of the phonatory system or psychosocial factors acquired by the speaker. ASR systems attempt to find those peculiar nuances of a voice and associate them to an individual or a group. Age and gender are inherent factors to the speaker which may be represented in voice. This work attempts to differentiate those characteristics, isolate them and use them to detect speaker’s gender and age. Features based on glottal pulse and vocal tract are studied and analyzed in order to achieve good results in both tasks. Classical methodologies (such as pitch and derivates) are avoided since the requirements of those techniques may be too restrictive. The final scores achieve almost 100% in gender recognition whereas in age recognition those scores are around 80%. Factors related to the gender and hormones seem to affect the voice although they are not audible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes our participation at PAN 2014 author profiling task. Our idea was to define, develop and evaluate a simple machine learning classifier able to guess the gender and the age of a given user based on his/her texts, which could become part of the solution portfolio of the company. We were interested in finding not the best possible classifier that achieves the highest accuracy, but to find the optimum balance between performance and throughput using the most simple strategy and less dependent of external systems. Results show that our software using Naive Bayes Multinomial with a term vector model representation of the text is ranked quite well among the rest of participants in terms of accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Characterising users through demographic attributes is a necessary step before conducting opinion surveys from information published by such users in social media. In this paper, we describe, compare and evaluate different techniques for the identification of the attributes "gender"' and "place of residence" by mining the metadata associated to the users, the content published and shared by themselves, and their friendship networks. The results obtained show that the social network is a valuable source of information for obtaining the sociodemographic attributes of single users.