6 resultados para Gas-turbines
em Universidad Politécnica de Madrid
Resumo:
The utilisation of biofuels in gas turbines is a promising alternative to fossil fuels for power generation. It would lead to significant reduction of CO2 emissions using an existing combustion technology, although significant changes seem to be needed and further technological development is necessary. The goal of this work is to perform energy and exergy analyses of the behaviour of gas turbines fired with biogas, ethanol and synthesis gas (bio-syngas), compared with natural gas. The global energy transformation process (i.e. from biomass to electricity) has also been studied. Furthermore, the potential reduction of CO2 emissions attained by the use of biofuels has been determined, considering the restrictions regarding biomass availability. Two different simulation tools have been used to accomplish the aims of this work. The results suggest a high interest and the technical viability of the use of Biomass Integrated Gasification Combined Cycle (BIGCC) systems for large scale power generation.
Resumo:
Analysis and simulation of the behaviour of gas turbines for power generation using different nonconventional fuels obtained from different renewable sources are presented. Three biomass-tobiofuel processes are considered: anaerobic digestion of biomass (biogas), biomass gasification (synthesis gas) and alcoholic fermentation of biomass and dehydration (bioethanol), each of them with two different biomass substrates (energy crops and municipal solid waste) as input. The gas turbine behaviour in a Brayton cycle is simulated both in an isolated operation and in combined cycle. The differences in gas turbine performance when fired with the considered biofuels compared to natural gas are studied from different points of view related with the current complex energetic context: energetic and exergetic efficiency of the simple/combined cycle and CO2 emissions. Two different tools have been used for the simulations, each one with a different approach: while PATITUG (own software) analyses the behaviour of a generic gas turbine allowing a total variability of parameters, GT-PRO (commercial software) is more rigid, albeit more precise in the prediction of real gas turbine behaviour. Different potentially interesting configurations and its thermodynamic parameters have been simulated in order to obtain the optimal range for all of them and its variation for each fuel.
Resumo:
Analysis and simulation of the behaviour of gas turbines for power generation using different nonconventional fuels obtained from different renewable sources are presented. Three biomass-tobiofuel processes are considered: anaerobic digestion of biomass (biogas), biomass gasification (synthesis gas) and alcoholic fermentation of biomass and dehydration (bioethanol), each of them with two different biomass substrates (energy crops and municipal solid waste) as input. The gas turbine behaviour in a Brayton cycle is simulated both in an isolated operation and in combined cycle. The differences in gas turbine performance when fired with the considered biofuels compared to natural gas are studied from different points of view related with the current complex energetic context: energetic and exergetic efficiency of the simple/combined cycle and CO2 emissions. Two different tools have been used for the simulations, each one with a different approach: while PATITUG (own software) analyses the behaviour of a generic gas turbine allowing a total variability of parameters, GT-PRO (commercial software) is more rigid, albeit more precise in the prediction of real gas turbine behaviour. Different potentially interesting configurations and its thermodynamic parameters have been simulated in order to obtain the optimal range for all of them and its variation for each fuel.
Resumo:
A research programme is being carried out at the Institute Nacional de Tecnica Aeroespacial of Spain, on several aspects of the formation of nitrogen oxides in continuous flow combustion systems, considering hydrogen and hydrocarbons as fuels. The research programme is fundamentally oriented on the basic aspects of the problem, although it also includes the study of the influence on the formation process of several operational and design variables of the combusters, such as type of fuels, fuel/air ratio, degree of mixing in premixed type flames, existence of droplets as compared with homogeneous combustion.This problem of nitrogen oxides formation is receiving lately great attention, specially in connection with automobile reciprocating engines and aircraft gas turbines. This is due to the fact of the increasing frequency and intensity of photochemical hazes or smog, typical of urban areas submitted to strong solar radiation, which are originated by the action on organic compounds of the oxidants resulting from the photochemical decomposition of nitrogen dioxide N02. In the combustion process almost all nitrogen oxides are in form of NO. This nitric oxide reacts with the oxygen of the air and forms N02, this reaction only taking place in or near the exhaust of tne motors, since the N0-02 reaction becomes frozen for the concentration existing in the atmosphere.
Resumo:
Liquid-fueled burners are used in a number of propulsion devices ranging from internal combustion engines to gas turbines. The structure of spray flames is quite complex and involves a wide range of time and spatial scales in both premixed and non-premixed modes (Williams 1965; Luo et al. 2011). A number of spray-combustion regimes can be observed experimentally in canonical scenarios of practical relevance such as counterflow diffusion flames (Li 1997), as sketched in figure 1, and for which different microscalemodelling strategies are needed. In this study, source terms for the conservation equations are calculated for heating, vaporizing and burning sprays in the single-droplet combustion regime. The present analysis provides extended formulation for source terms, which include non-unity Lewis numbers and variable thermal conductivities.
Resumo:
Chemical-looping combustion allows an integration of CO2 capture in a thermal power plant without energy penalty; secondly, a less exergy destruction in the combustion chemical transformation is achieved, leading to a greater overall thermal efficiency. This paper focus on the study of the energetic performance of this concept of combustion in an integrated gasification combined cycle power plant when synthesis gas is used as fuel for the gas turbines. After thermodynamic modelling and optimization of some cycle parameters, the power plant performance is evaluated under diverse working conditions and compared to a conventional integrated gasification combined cycle with precombustion capture. Energy savings in CO2 capture and storage has been quantified. The overall efficiency increase is found to be significant and even notable, reaching values of around 7%. In order to analyze the influence of syngas composition on the results, different H2-content fuels are considered.