5 resultados para GAS-SENSING PROPERTIES

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantum dot infrared photodetectors (QDIPs) are very attractive for many applications such as infrared imaging, remote sensing and gas sensing, thanks to its promising features such as high temperature operation, normal incidence response and low dark current [1]. However, the key issue is to obtain a high-quality active region which requires an optimization of the nanostructure. By using GaAsSb capping layer, InAs QDs have improved their optical emission in the range between 1.15 and 1.3 m (at Sb composition of 14 %), due to a reduction of a compressive strain in QD and an increment of a QD height [2]. In this work, we have demonstrated strong and narrow intraband photoresponses at ~ 5 m from GaAsSb-capped InAs/GaAs QDIPs under normal light-incidence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The planar and axisymmetric variable-density flows induced in a quiescent gas by a concentrated source of momentum that is simultaneously either a source or a sink of energy are investigated for application to the description of the velocity and temperature far fields in laminar gaseous jets with either large or small values of the initial jet-to-ambient temperature ratio. The source fluxes of momentum and heat are used to construct the characteristic scales of velocity and length in the region where the density differences are of the order of the ambient density, which is slender for the large values of the Reynolds number considered herein. The problem reduces to the integration of the dimensionless boundary-layer conservation equations, giving a solution that depends on the gas transport properties but is otherwise free of parameters. The boundary conditions at the jet exit for integration are obtained by analysing the self-similar flow that appears near the heat source in planar and axisymmetric configurations and also near the heat sink in the planar case. Numerical integrations of the boundary-layer equations with these conditions give solutions that describe accurately the velocity and temperature fields of very hot planar and round jets and also of very cold plane jets in the far field region where the density and temperature differences are comparable to the ambient values. Simple scaling arguments indicate that the point source description does not apply, however, to cold round jets, whose far field region is not large compared with the jet development region, as verified by numerical integrations

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Self-organized InGaAs QDs are intensively studied for optoelectronic applications. Several approaches are in study to reach the emission wavelengths needed for these applications. The use of antimony (Sb) in either the capping layer or into the dots is one example. However, these studies are normally focused on buried QD (BQD) where there are still different controversial theories concerning the role of Sb. Ones suggest that Sb incorporates into the dot [1], while others support the hypothesis that the Sb occupies positions surrounding the dot [2] thus helping to keep their shape during the capping growth.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

CO2 capture and storage (CCS) projects are presently developed to reduce the emission of anthropogenic CO2 into the atmosphere. CCS technologies are expected to account for the 20% of the CO2 reduction by 2050. Geophysical, ground deformation and geochemical monitoring have been carried out to detect potential leakage, and, in the event that this occurs, identify and quantify it. This monitoring needs to be developed prior, during and after the injection stage. For a correct interpretation and quantification of the leakage, it is essential to establish a pre-injection characterization (baseline) of the area affected by the CO2 storage at reservoir level as well as at shallow depth, surface and atmosphere, via soil gas measurements. Therefore, the methodological approach is important because it can affect the spatial and temporal variability of this flux and even jeopardize the total value of CO2 in a given area. In this sense, measurements of CO2 flux were done using portable infrared analyzers (i.e., accumulation chambers) adapted to monitoring the geological storage of CO2, and other measurements of trace gases, e.g. radon isotopes and remote sensing imagery were tested in the natural analogue of Campo de Calatrava (Ciudad Real, Spain) with the aim to apply in CO2 leakage detection; thus, observing a high correlation between CO2 and radon (r=0,858) and detecting some vegetation indices that may be successfully applied for the leakage detection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nondestructive techniques are extensively researched for the measurement of physical properties of fruits related to quality. Optical properties can be applied mainly in the detection of those quality features which are related to the chemical composition of the fruit, color (in the VIS region) or chemical constituents (sugar, in the MR region) being the most important. The most relevant mechanical property of fruits is consistency, generally called firmness, and to date only techniques which are able to measure the mechanical properties of the fruit bulk tissue are used for its prediction. Fruits can be modelled as elastic bodies, or at least as partially elastic. Therefore, the measurement of some elastic constants of the fruit can be used for the evaluation of its firmness. The differences in the response to loading are relevant in studying a) fruit firmness and b) bruising susceptibility. Both have been modelled for selected fruit species and varieties.