66 resultados para GAS NATURAL - ASPECTOS SOCIOECONOMICOS
em Universidad Politécnica de Madrid
Resumo:
Este proyecto consiste en el dimensionamiento del proceso de licuación de una planta offshore para la producción de gas natural licuado, usando únicamente N2 como refrigerante, evitando de este modo riesgos potenciales que podrían surgir con el uso de refrigerantes mixtos compuestos de hidrocarburos. El proceso ha sido diseñado para acomodar 35,23 kg/s (aproximadamente un millón de toneladas por año) de gas natural seco, sin separación de gases licuados de petróleo (GLP) y ajustarlo dentro de los parámetros requeridos en las especificaciones del proceso. Para proceder al dimensionamiento del proceso de licuación de gas natural de la planta se ha empleado el programa Aspen Plus. Los sistemas floating production, storage and offloading para licuar el gas natural (LNG-FPSO), es una nueva unidad conceptual y un modo realista y efectivo para la explotación, recuperación, almacenamiento, transporte y agotamiento de los campos marginales de gas y las fuentes de gas asociadas offshore. En el proyecto se detalla el proceso, equipos necesarios y costes estimados, potencia aproximada requerida y un breve análisis económico. ABSTRACT This project consist of the dimensioning of a liquefaction process in an offshore plant to produce liquefied natural, using only N2 as refrigerant in the cooling cycles to avoid potential hazards of mixed hydrocarbon refrigerants. The process was designed to accommodate 35.23 kg/s (roughly 1 MTPA) of raw natural gas feed without separation of LPG, and fits within all parameters required in the process specifications. The plant has been designed with the computer tool Aspen Plus. The floating production, storage and offloading system for liquefied natural gas (LNGFPSO), is a new conceptual unit and an effective and realistic way for exploitation, recovery, storage, transportation and end-use applications of marginal gas fields and offshore associated-gas resources. The following report details the process, equipment needs and estimated costs, approximated power requirements, and a brief economic analysis.
Resumo:
El objetivo de este proyecto es estudiar la recuperación secundaria de petróleo de la capa sureste Ayoluengo del campo Ayoluengo, Burgos (España), y su conversión en un almacenamiento subterráneo de gas. La capa Ayoluengo se ha considerado como una capa inclinada de 60 km por 10 km de superficie por 30 m de espesor en el que se han perforado 20 pozos, y en donde la recuperación primaria ha sido de un 19%. Se ha realizado el ajuste histórico de la recuperación primaria de gas, petróleo y agua de la capa desde el año 1965 al 2011. La conversión a almacenamiento subterráneo de gas se ha realizado mediante ciclos de inyección de gas, de marzo a octubre, y extracción de gas, de noviembre a febrero, de forma que se incrementa la presión del campo hasta alcanzar la presión inicial. El gas se ha inyectado y extraído por 5 pozos situados en la zona superior de la capa. Al mismo tiempo, se ha realizado una recuperación secundaria debido a la inyección de gas natural de 20 años de duración en donde la producción de petróleo se realiza por 14 pozos situados en la parte inferior de la capa. Para proceder a la simulación del ajuste histórico, conversión en almacenamiento y recuperación secundaria se utilizó el simulador Eclipse100. Los resultados obtenidos fueron una recuperación secundaria de petróleo de un 9% más comparada con la primaria. En cuanto al almacenamiento de gas natural, se alcanzó la presión inicial consiguiendo un gas útil de 300 Mm3 y un gas colchón de 217,3 Mm3. ABSTRACT The aim of this project is to study the secondary recovery of oil from the southeast Ayoluengo layer at the oil field Ayoluengo, Burgos (Spain), and its conversion into an underground gas storage. The Ayoluengo layer is an inclined layer of 60 km by 10km of area by 30 m gross and with 20 wells, which its primary recovery is of 19%. The history matching of the production of oil, gas and water has been carried out from the year 1965 until 2011. The conversion into an underground gas storage has been done in cycles of gas injection from March to October, and gas extraction from November to February, so that the reservoir pressure increases until it gets to the initial pressure. The gas has been injected and extracted through five well situated in the top part of the layer. At the same time, the secondary recovery has occurred due to de injection of natural gas during 20 years where the production of oil has been done through 14 wells situated in the lowest part of the layer. To proceed to the simulation of the history match, the conversion into an underground gas storage and its secondary recovery, the simulator used was Eclipse100. The results were a secondary recovery of oil of 9% more, compared to the primary recovery and concerning the underground gas storage, the initial reservoir pressure was achieved with a working gas of 300 Mm3 and a cushion gas of 217,3 Mm3.
Resumo:
RESUMEN Este proyecto ha tenido por objetivo el estudio de la viabilidad de instalar un nuevo almacenamiento subterráneo de gas natural en España. Dentro de las diferentes posibilidades para emplazar el almacenamiento de gas natural se escogió el domo salino por ser la estructura geológica más favorable desde el punto de vista técnico y económico. Una vez escogido el domo salino, el estudio se centró en localizar una ubicación lo más favorable posible siendo el domo salino de Salinas de Añana el elegido. Una vez elegido el domo se procedió al estudio de la viabilidad técnica de la instalación; para ello se utilizaron estudios geológicos, gavimétricos y sondeos. Tras estos estudios se concluyó que en el domo salino de Salinas de Añana es posible la instalación de un almacenamiento subterráneo de gas natural y se procedió a la caracterización del almacenamiento. ABSTRACT This project has considered of installing a new underground natural gas storage in Spain. Among the different possibilities to place a natural gas storage, the salt dome was chosen because it was the geological strucutrure where the project was easier and more interesting economically. After that the study focused on looking for the location as favorable as possible. The best place was the salt dome of Salinas de Añana. Before the salt dome of Salinas de Añana was chosen this project tried to know if the setting-up of a natural gas storage is technical feasibility. For that were used geological studies, gravity studies and drillings. These studies concluded that is possible the setting-up and the study tried to describe technically this storage.
Resumo:
El presente proyecto consiste en el diseño básico de ingeniería de un tanque aéreo de almacenamiento de gas natural licuado (GNL) de integridad total con tecnología de membrana y con una capacidad neta de almacenamiento de 200 000 m3 a una temperatura de -162ºC y una presión máxima de 15 kPa. El proyecto desarrolla los siguientes puntos: el diseño del tanque interno con tecnología de membrana, dimensionamiento del aislante, diseño del techo suspendido, tanque externo, cúpula de hormigón, cimentación, dimensionamiento de los equipos, Ensayos, puesta en frío, puesta en servicio, planificación de la ejecución del proyecto, recursos empleados, control de la presión, prevención del rollover, coste del tanque y análisis económico del proyecto
Resumo:
Se propone la construcción de una planta satélite de gas natural anexa a una estación de servicio de carburante. El interés del proyecto se centra en el ahorro económico que supone el uso de este combustible para el transporte por carretera (hasta 50 %). Además el gas natural es, en relación al petróleo, más limpio y la relación reservas/producción es mayor. En España la infraestructura de esta tecnología es una de las mayores y mejor consolidadas de Europa. Se ha elegido la E.S. localizada en el km 26 de la autopista A1 con sentido Burgos (San Sebastián de los Reyes, Madrid). Esta autopista es una de las principales vías de conexión entre España y el resto de Europa, resultando interesante pensando en el sector trasportista. La planta dispondrá de un tanque criogénico de 60 m3 para almacenar gas natural licuado (GNL) a una temperatura de -163 ºC. Parte de éste será comprimido a 290 bar y después conducido a un vaporizador ambiental de alta presión que lo gasificará. Finalmente el gas resultante se odorizará obteniendo gas natural comprimido (GNC) que quedará preparado para su almacenaje en vasijas. El tanque criogénico (GNL) y las botellas (GNC) se conectarán a sus respectivos surtidores para el suministro de combustible. La planta incluirá un surtidor de GNC y otro de GNL para vehículos pesados. Se realizará el montaje e instalación de los equipos y líneas necesarios para el almacenaje, manipulación y suministro de gas natural vehicular.
Resumo:
Diseño de un tren de licuación Conoco Phillips de 5 MTPA, mediante el software de simulación Aspen Plus. Incluye planificación y análisis económico del proyecto.
Resumo:
Este proyecto consiste en el análisis de las técnicas de compresión de gas natural, tanto técnica como económicamente, así como el diseño de la estación de compresión localizada en Irún, provincia de Guipúzcoa, con la mejor opción. El proyecto define el interés de este tipo de instalaciones, su funcionamiento, detalla los distintos sistemas de los que consta la estación de compresión y estudia la rentabilidad económica en base al presupuesto de la instalación y a la retribución de las actividades reguladas del sector gasista. Los distintos sistemas de los que consta la estación de compresión, y que forman parte del contenido del proyecto son, todos los necesarios para el funcionamiento de la estación: sistemas mecánicos, instrumentación y control, obra civil y sistemas auxiliares (sistemas eléctricos, de seguridad y antiintrusión).
Resumo:
Este trabajo tiene como objetivo el diseño y dimensionamiento del gasoducto de alimentación a la planta de producción de GNL del proyecto Gorgon LNG, el cual consiste en la explotación de varios yacimientos de gas natural offshore al oeste de Australia y la producción de GNL en la planta situada en la Isla Barrow. Se han considerado dos fases de desarrollo, una inicial con ocho pozos, y otra de madurez con doce. El dimensionamiento se ha realizado mediante simulaciones con el programa Aspen Hysys, mediante el cual se han obtenido los diámetros internos mínimos y los perfiles de presiones y temperaturas, así como el caudal de MEG requerido para evitar la formación de hidratos. Posteriormente, mediante cálculo matemático se ha calculado el espesor teniendo en cuenta las tensiones mecánicas a las que estará sometida la tubería. Finalmente, a partir de los resultados del cálculo técnico se ha realizado el estudio económico, estimando costes e ingresos, en el cual se ha realizado un estudio de la rentabilidad del proyecto y un análisis de sensibilidad, resultando un proyecto técnica y económicamente viable.
Resumo:
El uso de las turbinas de gas en ciclo combinado es una de las alternativas más aceptadas en los últimos tiempos. Existen muchas razones por las que se está investigando sobre la posibilidad de usar otro tipo de combustibles como alternativa al característico, gas natural (metano). Entre otras, se pueden citar: la evolución del precio y la disponibilidad en una zona de algún tipo de gas de síntesis [17] así como estrategias medioambientales y de emisiones [10], [18], [20]. En la bibliografía se encuentran estudios, en los que de forma rigurosa se establece la relación entre la eficiencia de una instalación, usando balances característicos del Segundo Principio de la Termodinámica, y aspectos muy diversos como análisis de los gases de combustión [14], posibilidad de recalentamiento de los gases [19], temperaturas de gasificación [23] y temperatura de llama [18] etc. Estos estudios siempre toman como combustible el metano. En este estudio se presenta un análisis de las emisiones de CO2 (toneladas emitidas) por energía eléctrica producida (MWh) en la instalación de turbina de gas en ciclo combinado usando como combustible los primeros elementos de los hidrocarburos alcanos desde el metano, que se toma como referencia, hasta el heptano. Esto permite la determinación de las emisiones para distintos combustibles con distintas composiciones. Como parámetros relacionados directamente con la eficiencia de la instalación, se han contemplado para cada combustible diferentes temperaturas de entrada a la turbina de gas y distintas relaciones de compresión. Finalmente se obtienen una serie de curvas que relacionan la eficiencia y las emisiones con el número de carbonos presentes en el combustible. El análisis realizado pretende ser un elemento de discusión, basado en aspectos puramente termodinámicos, para la toma de decisiones
Resumo:
Este proyecto trata sobre la gestión del boil-off gas, o BOG (vapor de gas natural que se produce en las instalaciones de gas natural licuado de las plantas de regasificación), generado en la planta de regasificación de Gas Natural Licuado de Cartagena, tanto en las situaciones en las que se opera por debajo del mínimo técnico, como en las cargas y descargas de buques, en las cuales se ha de gestionar una cantidad del boil-off adicional. Para recuperar el boil-off, las plantas cuentan con un relicuador (intercambiador de calor) en el que el BOG es relicuado por el GNL que se envía a los vaporizadores para ser regasificado y emitido a la red. De forma complementaria cuentan también con una antorcha/venteo donde se quema el exceso de boil-off que no puede ser tratado por el relicuador. Se procede a un análisis de la situación actual, y de cómo la baja demanda de regasificación dificulta la gestión del boil-off. Se simula el proceso de relicuación actual en distintas situaciones de operación. Ante la situación de baja demanda, ha aumentado considerablemente el número de días en los que las plantas españolas en general, y la planta de Cartagena en particular, operan por debajo del mínimo técnico, que es el nivel de producción mínimo para recuperar todo el boil-off generado en cualquier situación de operación al tiempo que mantiene en frío todas las instalaciones, y garantiza el 100% de disponibilidad inmediata del resto de los equipos en condiciones de seguridad de funcionamiento estable. Esta situación supone inconvenientes tanto operativos como medioambientales y acarrea mayores costes económicos, a los cuales da solución el presente proyecto, decidiendo qué alternativa técnica es la más adecuada y definiéndola. Abstract This project is about the management of the boil-off gas (BOG), natural vapour gas that is produced in liquefied natural gas (LNG) regasification plants. Specifically, the study is focused on the LNG regasification plant located in Cartagena, when it operates both below the technical minimum level of regasification and in the loading/unloading of LNG carriers, situations when it is needed to handle additional BOG. In order to make the most of BOG, the plants have a re-condenser (heat exchanger). Here, the BOG is re-liquefied by the LNG that is submitted to the vaporizers and delivered to the grid. The plants also have a flare/vent where the excess of BOG that cannot be treated by the re-condenser is burned. An analysis of the current situation of the demand is performed, evaluating how low markets demand for regasification difficult the BOG management. Besides, it is simulated the current re-liquefaction operating in different environments. Due to the reduction of the demand for natural gas, the periods when Spanish LNG regasification plants (and particularly the factory of Cartagena) are operating below the technical minimum level of regasification are more usual. This level is the minimum production to recover all the BOG generated in any operating situation while maintaining cold all facilities, fully guaranteeing the immediate availability from other equipment in a safely and stable operation. This situation carries both operational and environmental drawbacks, and leads to higher economic costs. This project aims to solve this problem, presenting several technical solutions and deciding which is the most appropriate.
Resumo:
Este proyecto pretende ofrecer una visión general de una de las tecnologías más actuales de recuperación de gas en formaciones no convencionales: fracturación hidráulica o “fracking”. El proyecto está motivado por la necesidad de responder a diferentes cuestiones sobre los efectos ambientales, sociales y en la salud humana derivados de la utilización de esa tecnología. Ofrece, además, una descripción del proceso y utilización de la tecnología haciendo especial mención de los riesgos inherentes de su uso, aunque también se intenta establecer una vía de aceptación para su desarrollo cuyo fin último, a parte de los beneficios económicos de quienes la usan, es el de posibilitar la transición hacia el uso de unos recursos (energías fósiles de extracción no convencional) que requieren de dichas técnicas para mantener, a lo largo del tiempo, el suministro de una energía que se supone más respetuosa con el medio ambiente: el gas natural. En primer lugar se expone, a modo introductorio, la necesidad de utilización de nuevas técnicas de estimulación de pozos y su utilización para satisfacer las necesidades energéticas mundiales en los próximos años. A continuación se hace una revisión del marco regulatorio aplicable al gas no convencional. Seguidamente, se hace una descripción de los recursos y fuentes no convencionales de gas y la descripción del proceso de fracturación hidráulica. Se analizan los incidentes relacionados con su desarrollo y las posibilidades y mecanismos que pueden adoptarse para reducirlos. Finalmente, se proponen vías alternativas basadas en las mejores técnicas aplicables al uso de la tecnología, cuya finalidad sea la mayor consideración ambiental posible y el menor riesgo posible en la salud de las personas. ABSTRACT This project aims to provide an overview of the latest technologies in gas recovery unconventional formations: hydraulic fracturing or "fracking". The project is motivated by the need to respond to various questions on the environmental, social and human health arising from the use of this technology. It also offers a description of the process and use of technology with special mention of the inherent risks of their use, but also tries to establish a path of acceptance for development whose ultimate goal, apart from the economic benefits of those who use is of enabling the transition to the use of certain resources (fossil energy extraction unconventional) which require such techniques to maintain, over time, of an energy supply which is more environmentally friendly: natural gas. First discussed the need to use new well stimulation techniques and their use to meet the world's energy needs in the coming years. Below is a review of the regulatory framework applicable to unconventional gas. Next, there is a description of resources and unconventional sources of gas, and the description of the process of hydraulic fracturing. We analyze the incidents related to its development and the possibilities and mechanisms that can be taken to reduce them. Finally, we suggest alternative routes based on the best techniques applicable to the use of technology, aiming at the highest possible environmental consideration and the least possible risk to the health of people.
Resumo:
Hasta ahora, la gran mayoría de los recursos explotados de gas natural procedían de acumulaciones convencionales de gas aislado y de gas asociado y disuelto en el petróleo. Sin embargo, el gas natural se encuentra también en yacimientos que, debido a su baja porosidad y permeabilidad, tienen unas características que hacen que hasta muy recientemente no hayan sido económicamente rentables y que sólo puedan ser explotados mediante técnicas no convencionales, dando lugar al denominado gas no convencional. Las técnicas utilizadas para su extracción son la fracturación hidráulica o “fracking” y la perforación horizontal. Entre los diversos tipos de gas no convencional, es de prever que el gas de pizarra sea el que sufra mayor desarrollo a medio plazo en nuestro país, por lo que se están generando grandes debates, debido al riesgo de contaminación de las aguas superficiales y subterráneas del entorno, provocados por la elevada cantidad de agua utilizada, los aditivos empleados, los fluidos de retorno, por la alteración del medio físico, así como por la dificultad de monitorización de estos procesos. En este proyecto se identifican los riesgos ambientales y sanitarios asociados a la extracción de gas no convencional. El trabajo se basa principalmente en experiencias ocurridas en países donde el fracking se ha convertido en una práctica habitual. Se trata además de establecer las bases necesarias para la estimación de la vulnerabilidad de los acuíferos frente a la contaminación inducida por la fracturación hidráulica. Abstract Until now, most of the natural gas resources exploited were from isolated conventional gas accumulations and associated and dissolved gas in oil. However, the natural gas is also in reservoirs that, due to their low porosity and permeability, have characteristics that make until recently not been economically profitable and can be exploited only by unconventional techniques, leading to the so called unconventional gas. The techniques used for extraction are hydraulic fracturing or "fracking" and horizontal drilling. Among the various types of unconventional gas, it is expected that shale gas is the suffering greater medium-term development in our country, so it is generating much debate, due to the risks of contamination in surface waters and subterranean environment, caused by the high amount of water used, the additives used, the return fluid, by altering the physical environment, and the difficulty of monitoring these processes. In this project identifies the environmental and health risks associated with unconventional gas extraction. The work is mainly based on experiences that occurred in countries where fracking has become a common practice. This is for establish the necessary basis for estimating the vulnerability of aquifers from contamination induced by hydraulic fracturing.
Resumo:
Los precios de compra de gas natural en el mercado mayorista español son los más altos de toda Europa. Este escenario provoca que haya que buscar alternativas para minimizar los costes de aprovisionamiento para una comercializadora de gas. En este proyecto se analizan distintas oportunidades de compra de gas en los mercados europeos y su importación al sistema gasista español para el suministro final a clientes, con el fin de optimizar los costes del gas natural para una comercializadora. En la búsqueda de nuevas oportunidades se incluye también un análisis del impacto económico en el mercado, de la producción de “shale gas” en España a medio - largo plazo. ABSTRACT The gas prices in the Spanish gas market are the highest in Europe. This scenario leads the Spanish gas trading companies to look for alternatives to minimize gas supply costs. In this project it is analyzed different opportunities of gas supply in the European markets and the gas import to the Spanish gas system, in order to optimize the costs of the natural gas for a gas trading company. Along with this, it is also studied, the economic impact of the “shale gas” production in Spain in a medium - long term on the Spanish gas market
Resumo:
Se proponen cuestiones para que los alumnos indaguen sobre aspectos relacionados con las calderas de conden· sación, que producen agua líquida en vez de vapor. Los objetivos son los siguientes: favorecer el aprendizaje de conceptos (termoquímica, combustión, gas natural, etc.); promover la motivación de alumnos y profesores; fomentar enfoques ciencia?tecnología?sociedad, y colaborar en la formación de competencias (indagación, reso· lución de problemas, análisis de datos, trabajo en equipo, etc.). Se promueve el pensamiento crítico y la forma· ción en «química del consumidor», tratando aspectos como los motivos de la ayuda pública para la instalación de estas calderas y el empleo de la factura del gas como fuente de información
Resumo:
En la actualidad más del 80 % de la energía eléctrica empleada en el mundo se obtiene a partir de combustibles de origen fósil. Sin embargo, estas fuentes de energía (gas natural, el carbón o el petróleo) presentan problemas de emisión de cantidades importantes de contaminantes a la atmósfera como CO, NOx y SOx. Estas emisiones están llevando a intentar reducir las emisiones enfocando el consumo a la utilización de fuentes de energía renovable, menos dañinas para el ambiente como la energía solar, la eólica, la biomasa, etc. En los almacenamientos de biomasa, ésta es potencialmente capaz de absorber oxígeno produciendo reacciones exotérmicas de oxidación. Si el calor producido en estas reacciones no se disipa adecuadamente, provoca un auto-calentamiento de la materia orgánica que puede ser causa de descomposición e inflamación. En el ámbito de la posible auto-combustión en el almacenamiento y manipulación de las biomasas existen diversos factores que influyen en la susceptibilidad térmica de las biomasas, es decir, en su tendencia a la oxidación y posterior inflamación de la materia. Esta Tesis Doctoral pretende evaluar el riesgo de auto-combustión de las biomasas almacenadas, para su uso en procesos de gasificación. En este estudio se ha trabajado con biomasas de origen agrícola, forestal y residual empleadas en procesos industriales de gasificación con distinta composición química. Los métodos empleados se han basado en técnicas clásicas de termogravimetría, calorimetría diferencial de barrido, análisis de composición y morfología. Con estos ensayos se pretende definir un rango de temperaturas lo más estrecho posible donde las muestras presentan mayor susceptibilidad a un calentamiento espontáneo que puede derivar en auto-combustión, en función de las distintas propiedades estudiadas de las biomasas, para poder servir así de herramienta de evaluación y análisis del riesgo de autocombustión. Como conclusión se muestran umbrales y valores que relacionan las propiedades físicas y químicas de las biomasas estudiadas en su auto-combustión, analizando la influencia de los procesos de preparación de las biomasas sobre las variables que caracterizan su susceptibilidad térmica.