4 resultados para GAIN-ENHANCEMENT

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses how to design a Radial Line Slot Antenna (RLSA) whose waveguide is filled with high loss dielectric materials. We introduce a new design for the aperture slot coupling synthesis to restrain the dielectric losses and improve the antenna gain. Based on a newly defined slot coupling, a number of RLSAs with different sizes and loss factors are analyzed and their performances are predicted. Theoretical calculations suggest that the gain is sensitive to the material losses in the radial lines. The gain enhancement by using the new coupling formula is notable for larger antenna size and higher loss factor of the dielectric material. Three prototype RLSAs are designed and fabricated at 60GHz following different slot coupling syntheses, and their measured performances consolidate our theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method for measuring the linewidth enhancement factor (α-parameter) of semiconductor lasers is proposed and discussed. The method itself provides an estimation of the measurement error, thus self-validating the entire procedure. The α-parameter is obtained from the temporal profile and the instantaneous frequency (chirp) of the pulses generated by gain switching. The time resolved chirp is measured with a polarization based optical differentiator. The accuracy of the obtained values of the α-parameter is estimated from the comparison between the directly measured pulse spectrum and the spectrum reconstructed from the chirp and the temporal profile of the pulse. The method is applied to a VCSEL and to a DFB laser emitting around 1550 nm at different temperatures, obtaining a measurement error lower than ± 8%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As wafer-based solar cells become thinner, light-trapping textures for absorption enhancement will gain in importance. In this work, crystalline silicon wafers were textured with wavelength-scale diffraction grating surface textures by nanoimprint lithography using interference lithography as a mastering technology. This technique allows fine-tailored nanostructures to be realized on large areas with high throughput. Solar cell precursors were fabricated, with the surface textures on the rear side, for optical absorption measurements. Large absorption enhancements are observed in the wavelength range in which the silicon wafer absorbs weakly. It is shown experimentally that bi-periodic crossed gratings perform better than uni-periodic linear gratings. Optical simulations have been made of the fabricated structures, allowing the total absorption to be decomposed into useful absorption in the silicon and parasitic absorption in the rear reflector. Using the calculated silicon absorption, promising absorbed photocurrent density enhancements have been calculated for solar cells employing the nano-textures. Finally, first results are presented of a passivation layer deposition technique that planarizes the rear reflector for the purpose of reducing the parasitic absorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, a lot of applications use digital images. For example in face recognition to detect and tag persons in photograph, for security control, and a lot of applications that can be found in smart cities, as speed control in roads or highways and cameras in traffic lights to detect drivers ignoring red light. Also in medicine digital images are used, such as x-ray, scanners, etc. These applications depend on the quality of the image obtained. A good camera is expensive, and the image obtained depends also on external factor as light. To make these applications work properly, image enhancement is as important as, for example, a good face detection algorithm. Image enhancement also can be used in normal photograph, for pictures done in bad light conditions, or just to improve the contrast of an image. There are some applications for smartphones that allow users apply filters or change the bright, colour or contrast on the pictures. This project compares four different techniques to use in image enhancement. After applying one of these techniques to an image, it will use better the whole available dynamic range. Some of the algorithms are designed for grey scale images and others for colour images. It is used Matlab software to develop and present the final results. These algorithms are Successive Means Quantization Transform (SMQT), Histogram Equalization, using Matlab function and own implemented function, and V transform. Finally, as conclusions, we can prove that Histogram equalization algorithm is the simplest of all, it has a wide variability of grey levels and it is not suitable for colour images. V transform algorithm is a good option for colour images. The algorithm is linear and requires low computational power. SMQT algorithm is non-linear, insensitive to gain and bias and it can extract structure of the data. RESUMEN. Hoy en día incontable número de aplicaciones usan imágenes digitales. Por ejemplo, para el control de la seguridad se usa el reconocimiento de rostros para detectar y etiquetar personas en fotografías o vídeos, para distintos usos de las ciudades inteligentes, como control de velocidad en carreteras o autopistas, cámaras en los semáforos para detectar a conductores haciendo caso omiso de un semáforo en rojo, etc. También en la medicina se utilizan imágenes digitales, como por ejemplo, rayos X, escáneres, etc. Todas estas aplicaciones dependen de la calidad de la imagen obtenida. Una buena cámara es cara, y la imagen obtenida depende también de factores externos como la luz. Para hacer que estas aplicaciones funciones correctamente, el tratamiento de imagen es tan importante como, por ejemplo, un buen algoritmo de detección de rostros. La mejora de la imagen también se puede utilizar en la fotografía no profesional o de consumo, para las fotos realizadas en malas condiciones de luz, o simplemente para mejorar el contraste de una imagen. Existen aplicaciones para teléfonos móviles que permiten a los usuarios aplicar filtros y cambiar el brillo, el color o el contraste en las imágenes. Este proyecto compara cuatro técnicas diferentes para utilizar el tratamiento de imagen. Se utiliza la herramienta de software matemático Matlab para desarrollar y presentar los resultados finales. Estos algoritmos son Successive Means Quantization Transform (SMQT), Ecualización del histograma, usando la propia función de Matlab y una nueva función que se desarrolla en este proyecto y, por último, una función de transformada V. Finalmente, como conclusión, podemos comprobar que el algoritmo de Ecualización del histograma es el más simple de todos, tiene una amplia variabilidad de niveles de gris y no es adecuado para imágenes en color. El algoritmo de transformada V es una buena opción para imágenes en color, es lineal y requiere baja potencia de cálculo. El algoritmo SMQT no es lineal, insensible a la ganancia y polarización y, gracias a él, se puede extraer la estructura de los datos.