11 resultados para Fuzzy sets
em Universidad Politécnica de Madrid
Resumo:
Trillas et al. (1999, Soft computing, 3 (4), 197–199) and Trillas and Cubillo (1999, On non-contradictory input/output couples in Zadeh's CRI proceeding, 28–32) introduced the study of contradiction in the framework of fuzzy logic because of the significance of avoiding contradictory outputs in inference processes. Later, the study of contradiction in the framework of Atanassov's intuitionistic fuzzy sets (A-IFSs) was initiated by Cubillo and Castiñeira (2004, Contradiction in intuitionistic fuzzy sets proceeding, 2180–2186). The axiomatic definition of contradiction measure was stated in Castiñeira and Cubillo (2009, International journal of intelligent systems, 24, 863–888). Likewise, the concept of continuity of these measures was formalized through several axioms. To be precise, they defined continuity when the sets ‘are increasing’, denominated continuity from below, and continuity when the sets ‘are decreasing’, or continuity from above. The aim of this paper is to provide some geometrical construction methods for obtaining contradiction measures in the framework of A-IFSs and to study what continuity properties these measures satisfy. Furthermore, we show the geometrical interpretations motivating the measures.
Resumo:
In this paper, we commence the study of the so called supplementarity measures. They are introduced axiomatically and are then related to incompatibility measures by antonyms. To do this, we have to establish what we mean by antonymous measure. We then prove that, under certain conditions, supplementarity and incompatibility measuresare antonymous. Besides, with the aim of constructing antonymous measures, we introduce the concept of involution on the set made up of all the ordered pairs of fuzzy sets. Finally, we obtain some antonymous supplementarity measures from incompatibility measures by means of involutions.
Resumo:
In a previous paper, we proposed an axiomatic model for measuring self-contradiction in the framework of Atanassov fuzzy sets. This way, contradiction measures that are semicontinuous and completely semicontinuous, from both below and above, were defined. Although some examples were given, the problem of finding families of functions satisfying the different axioms remained open. The purpose of this paper is to construct some families of contradiction measures firstly using continuous t-norms and t-conorms, and secondly by means of strong negations. In both cases, we study the properties that they satisfy. These families are then classified according the different kinds of measures presented in the above paper.
Resumo:
Walker et al. defined two families of binary operations on M (set of functions of [0,1] in [0,1]), and they determined that, under certain conditions, those operations are t-norms (triangular norm) or t-conorms on L (all the normal and convex functions of M). We define binary operations on M, more general than those given by Walker et al., and we study many properties of these general operations that allow us to deduce new t-norms and t-conorms on both L, and M.
Resumo:
In this paper, we axiomatically introduce fuzzy multi-measures on bounded lattices. In particular, we make a distinction between four different types of fuzzy set multi-measures on a universe X, considering both the usual or inverse real number ordering of this lattice and increasing or decreasing monotonicity with respect to the number of arguments. We provide results from which we can derive families of measures that hold for the applicable conditions in each case.
Resumo:
The fuzzy min–max neural network classifier is a supervised learning method. This classifier takes the hybrid neural networks and fuzzy systems approach. All input variables in the network are required to correspond to continuously valued variables, and this can be a significant constraint in many real-world situations where there are not only quantitative but also categorical data. The usual way of dealing with this type of variables is to replace the categorical by numerical values and treat them as if they were continuously valued. But this method, implicitly defines a possibly unsuitable metric for the categories. A number of different procedures have been proposed to tackle the problem. In this article, we present a new method. The procedure extends the fuzzy min–max neural network input to categorical variables by introducing new fuzzy sets, a new operation, and a new architecture. This provides for greater flexibility and wider application. The proposed method is then applied to missing data imputation in voting intention polls. The micro data—the set of the respondents’ individual answers to the questions—of this type of poll are especially suited for evaluating the method since they include a large number of numerical and categorical attributes.
Resumo:
There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson’s fuzzy min-max neural networks where the input variables for learning and classification are just numerical. The proposed method extends the input to categorical variables by introducing new fuzzy sets, a new operation and a new architecture. The procedure is tested and compared with others using opinion poll data.
Resumo:
We introduce a dominance intensity measuring method to derive a ranking of alternatives to deal with incomplete information in multi-criteria decision-making problems on the basis of multi-attribute utility theory (MAUT) and fuzzy sets theory. We consider the situation where there is imprecision concerning decision-makers’ preferences, and imprecise weights are represented by trapezoidal fuzzy weights.The proposed method is based on the dominance values between pairs of alternatives. These values can be computed by linear programming, as an additive multi-attribute utility model is used to rate the alternatives. Dominance values are then transformed into dominance intensity measures, used to rank the alternatives under consideration. Distances between fuzzy numbers based on the generalization of the left and right fuzzy numbers are utilized to account for fuzzy weights. An example concerning the selection of intervention strategies to restore an aquatic ecosystem contaminated by radionuclides illustrates the approach. Monte Carlo simulation techniques have been used to show that the proposed method performs well for different imprecision levels in terms of a hit ratio and a rank-order correlation measure.
Resumo:
We establish an axiomatic model of multi-measures, capturing some classes of measures studied in the fuzzy sets literature, where they are applied to only one or two arguments.
Resumo:
Resumen La investigación descrita en esta memoria se enmarca en el campo de la lógica borro¬sa. Más concretamente, en el estudio de la incompatibilidad, de la compatibilidad y de la suplementaridad en los conjuntos borrosos y en los de Atanassov. En este orden de ideas, en el primer capítulo, se construyen, tanto de forma directa como indirecta, funciones apropiadas para medir la incompatibilidad entre dos conjuntos borro-sos. Se formulan algunos axiomas para modelizar la continuidad de dichas funciones, y se determina si las medidas propuestas, y otras nuevas que se introducen, verifican algún tipo de continuidad. Finalmente, se establece la noción de conjuntos borrosos compatibles, se introducen axiomas para medir esta propiedad y se construyen algunas medidas de compa¬tibilidad. El segundo capítulo se dedica al estudio de la incompatibilidad y de la compatibilidad en el campo de los conjuntos de Atanassov. Así, en primer lugar, se presenta una definición axiomática de medida de incompatibilidad en este contexto. Después, se construyen medidas de incompatibilidad por medio de los mismos métodos usados en el caso borroso. Además, se formulan axiomas de continuidad y se determina el tipo de continuidad de las medidas propuestas. Finalmente, se sigue un camino similar al caso borroso para el estudio de la compatibilidad. En el tercer capítulo, después de abordar la antonimia de conjuntos borrosos y de conjuntos de Atanassov, se formalizan las nociones de conjuntos suplementarios en estos dos entornos y se presenta, en ambos casos, un método para obtener medidas de suplementaridad a partir de medidas de incompatibilidad vía antónimos. The research described in this report pertains to the field of fuzzy logic and specifically studies incompatibility, compatibility and supplementarity in fuzzy sets and Atanassov's fuzzy sets. As such is the case, Chapter 1 describes both the direct and indirect construction of appropriate functions for measuring incompatibility between two fuzzy sets. We formulate some axioms for modelling the continuity of functions and determine whether the proposed and other measures introduced satisfy any type of continuity. Chapter 2 focuses on the study of incompatibility and compatibility in the field of Ata¬nassov's fuzzy sets. First, we present an axiomatic definition of incompatibility measure in this field. Then, we use the same methods to construct incompatibility measures as in the fuzzy case. Additionally, we formulate continuity axioms and determine the type of conti¬nuity of the proposed measures. Finally, we take a similar approach as in the fuzzy case to the study of compatibility. After examining the antonymy of fuzzy sets and Atanassov's sets, Chapter 3 formalizes the notions of supplementary sets in these two domains, and, in both cases, presents a method for obtaining supplementarity measures from incompatibility measures via antonyms.
Resumo:
Los conjuntos borrosos de tipo 2 (T2FSs) fueron introducidos por L.A. Zadeh en 1975 [65], como una extensión de los conjuntos borrosos de tipo 1 (FSs). Mientras que en estos últimos el grado de pertenencia de un elemento al conjunto viene determinado por un valor en el intervalo [0, 1], en el caso de los T2FSs el grado de pertenencia de un elemento es un conjunto borroso en [0,1], es decir, un T2FS queda determinado por una función de pertenencia μ : X → M, donde M = [0, 1][0,1] = Map([0, 1], [0, 1]), es el conjunto de las funciones de [0,1] en [0,1] (ver [39], [42], [43], [61]). Desde que los T2FSs fueron introducidos, se han generalizado a dicho conjunto (ver [39], [42], [43], [61], por ejemplo), a partir del “Principio de Extensión” de Zadeh [65] (ver Teorema 1.1), muchas de las definiciones, operaciones, propiedades y resultados obtenidos en los FSs. Sin embargo, como sucede en cualquier área de investigación, quedan muchas lagunas y problemas abiertos que suponen un reto para cualquiera que quiera hacer un estudio profundo en este campo. A este reto se ha dedicado el presente trabajo, logrando avances importantes en este sentido de “rellenar huecos” existentes en la teoría de los conjuntos borrosos de tipo 2, especialmente en las propiedades de autocontradicción y N-autocontradicción, y en las operaciones de negación, t-norma y t-conorma sobre los T2FSs. Cabe destacar que en [61] se justifica que las operaciones sobre los T2FSs (Map(X,M)) se pueden definir de forma natural a partir de las operaciones sobre M, verificando las mismas propiedades. Por tanto, por ser más fácil, en el presente trabajo se toma como objeto de estudio a M, y algunos de sus subconjuntos, en vez de Map(X,M). En cuanto a la operación de negación, en el marco de los conjuntos borrosos de tipo 2 (T2FSs), usualmente se emplea para representar la negación en M, una operación asociada a la negación estándar en [0,1]. Sin embargo, dicha operación no verifica los axiomas que, intuitivamente, debe verificar cualquier operación para ser considerada negación en el conjunto M. En este trabajo se presentan los axiomas de negación y negación fuerte en los T2FSs. También se define una operación asociada a cualquier negación suprayectiva en [0,1], incluyendo la negación estándar, y se estudia, junto con otras propiedades, si es negación y negación fuerte en L (conjunto de las funciones de M normales y convexas). Además, se comprueba en qué condiciones se cumplen las leyes de De Morgan para un extenso conjunto de pares de operaciones binarias en M. Por otra parte, las propiedades de N-autocontradicción y autocontradicción, han sido suficientemente estudiadas en los conjuntos borrosos de tipo 1 (FSs) y en los conjuntos borrosos intuicionistas de Atanassov (AIFSs). En el presente trabajo se inicia el estudio de las mencionadas propiedades, dentro del marco de los T2FSs cuyos grados de pertenencia están en L. En este sentido, aquí se extienden los conceptos de N-autocontradicción y autocontradicción al conjunto L, y se determinan algunos criterios para verificar tales propiedades. En cuanto a otras operaciones, Walker et al. ([61], [63]) definieron dos familias de operaciones binarias sobre M, y determinaron que, bajo ciertas condiciones, estas operaciones son t-normas (normas triangulares) o t-conormas sobre L. En este trabajo se introducen operaciones binarias sobre M, unas más generales y otras diferentes a las dadas por Walker et al., y se estudian varias propiedades de las mismas, con el objeto de deducir nuevas t-normas y t-conormas sobre L. ABSTRACT Type-2 fuzzy sets (T2FSs) were introduced by L.A. Zadeh in 1975 [65] as an extension of type-1 fuzzy sets (FSs). Whereas for FSs the degree of membership of an element of a set is determined by a value in the interval [0, 1] , the degree of membership of an element for T2FSs is a fuzzy set in [0,1], that is, a T2FS is determined by a membership function μ : X → M, where M = [0, 1][0,1] is the set of functions from [0,1] to [0,1] (see [39], [42], [43], [61]). Later, many definitions, operations, properties and results known on FSs, have been generalized to T2FSs (e.g. see [39], [42], [43], [61]) by employing Zadeh’s Extension Principle [65] (see Theorem 1.1). However, as in any area of research, there are still many open problems which represent a challenge for anyone who wants to make a deep study in this field. Then, we have been dedicated to such challenge, making significant progress in this direction to “fill gaps” (close open problems) in the theory of T2FSs, especially on the properties of self-contradiction and N-self-contradiction, and on the operations of negations, t-norms (triangular norms) and t-conorms on T2FSs. Walker and Walker justify in [61] that the operations on Map(X,M) can be defined naturally from the operations onMand have the same properties. Therefore, we will work onM(study subject), and some subsets of M, as all the results are easily and directly extensible to Map(X,M). About the operation of negation, usually has been employed in the framework of T2FSs, a operation associated to standard negation on [0,1], but such operation does not satisfy the negation axioms on M. In this work, we introduce the axioms that a function inMshould satisfy to qualify as a type-2 negation and strong type-2 negation. Also, we define a operation on M associated to any suprajective negation on [0,1], and analyse, among others properties, if such operation is negation or strong negation on L (all normal and convex functions of M). Besides, we study the De Morgan’s laws, with respect to some binary operations on M. On the other hand, The properties of self-contradiction and N-self-contradiction have been extensively studied on FSs and on the Atanassov’s intuitionistic fuzzy sets (AIFSs). Thereon, in this research we begin the study of the mentioned properties on the framework of T2FSs. In this sense, we give the definitions about self-contradiction and N-self-contradiction on L, and establish the criteria to verify these properties on L. Respect to the t-norms and t-conorms, Walker et al. ([61], [63]) defined two families of binary operations on M and found that, under some conditions, these operations are t-norms or t-conorms on L. In this work we introduce more general binary operations on M than those given by Walker et al. and study which are the minimum conditions necessary for these operations satisfy each of the axioms of the t-norm and t-conorm.