6 resultados para Fuzzy linguistic variable
em Universidad Politécnica de Madrid
Resumo:
We propose a fuzzy approach to deal with risk analysis for information systems. We extend MAGERIT methodology that valuates the asset dependencies to a fuzzy framework adding fuzzy linguistic terms to valuate the different elements (terminal asset values, asset dependencies as well as the probability of threats and the resulting asset degradation) in risk analysis. Computations are based on the trapezoidal fuzzy numbers associated with these linguistic terms and, finally, the results of these operations are translated into a linguistic term by means of a similarity function.
Resumo:
In this paper, a fuzzy based Variable Structure Control (VSC) with guaranteed stability is presented. The main objective is to obtain an improved performance of highly non-linear unstable systems. The main contribution of this work is that, firstly, new functions for chattering reduction and error convergence without sacrificing invariant properties are proposed, which is considered the main drawback of the VSC control. Secondly, the global stability of the controlled system is guaranteed.The well known weighting parameters approach, is used in this paper to optimize local and global approximation and modeling capability of T-S fuzzy model.A one link robot is chosen as a nonlinear unstable system to evaluate the robustness, effectiveness and remarkable performance of optimization approach and the high accuracy obtained in approximating nonlinear systems in comparison with the original T-S model. Simulation results indicate the potential and generality of the algorithm. The application of the proposed FLC-VSC shows that both alleviation of chattering and robust performance are achieved with the proposed FLC-VSC controller. The effectiveness of the proposed controller is proven in front of disturbances and noise effects.
Resumo:
The data acquired by Remote Sensing systems allow obtaining thematic maps of the earth's surface, by means of the registered image classification. This implies the identification and categorization of all pixels into land cover classes. Traditionally, methods based on statistical parameters have been widely used, although they show some disadvantages. Nevertheless, some authors indicate that those methods based on artificial intelligence, may be a good alternative. Thus, fuzzy classifiers, which are based on Fuzzy Logic, include additional information in the classification process through based-rule systems. In this work, we propose the use of a genetic algorithm (GA) to select the optimal and minimum set of fuzzy rules to classify remotely sensed images. Input information of GA has been obtained through the training space determined by two uncorrelated spectral bands (2D scatter diagrams), which has been irregularly divided by five linguistic terms defined in each band. The proposed methodology has been applied to Landsat-TM images and it has showed that this set of rules provides a higher accuracy level in the classification process
Resumo:
In this paper a fuzzy optimal control for stabilizing an upright position a double inverted pendulum (DIP) is developed and compared. Modeling is based on Euler-Lagrange equations. This results in a complicated nonlinear fast reaction, unstable multivariable system. Firstly, the mathematical models of double pendulum system are presented. The weight variable fuzzy input is gained by combining the fuzzy control theory with the optimal control theory. Simulation results show that the controller, which the upper pendulum is considered as main control variable, has high accuracy, quick convergence speed and higher precision.
Resumo:
Assets are interrelated in risk analysis methodologies for information systems promoted by international standards. This means that an attack on one asset can be propagated through the network and threaten an organization's most valuable assets. It is necessary to valuate all assets, the direct and indirect asset dependencies, as well as the probability of threats and the resulting asset degradation. These methodologies do not, however, consider uncertain valuations and use precise values on different scales, usually percentages. Linguistic terms are used by the experts to represent assets values, dependencies and frequency and asset degradation associated with possible threats. Computations are based on the trapezoidal fuzzy numbers associated with these linguistic terms.
Resumo:
In this paper, a fuzzy logic controller (FLC) based variable structure control (VSC) is presented. The main objective is to obtain an improved performance of highly non-linear unstable systems. New functions for chattering reduction and error convergence without sacrificing invariant properties are proposed. The main feature of the proposed method is that the switching function is added as an additional fuzzy variable and will be introduced in the premise part of the fuzzy rules; together with the state variables. In this work, a tuning of the well known weighting parameters approach is proposed to optimize local and global approximation and modelling capability of the Takagi-Sugeno (T-S) fuzzy model to improve the choice of the performance index and minimize it. The main problem encountered is that the T-S identification method can not be applied when the membership functions are overlapped by pairs. This in turn restricts the application of the T-S method because this type of membership function has been widely used in control applications. The approach developed here can be considered as a generalized version of the T-S method. An inverted pendulum mounted on a cart is chosen to evaluate the robustness, effectiveness, accuracy and remarkable performance of the proposed estimation approach in comparison with the original T-S model. Simulation results indicate the potential, simplicity and generality of the estimation method and the robustness of the chattering reduction algorithm. In this paper, we prove that the proposed estimation algorithm converge the very fast, thereby making it very practical to use. The application of the proposed FLC-VSC shows that both alleviation of chattering and robust performance are achieved.