13 resultados para Functional Classification Trees

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the spinal cord of the anesthetized cat, spontaneous cord dorsum potentials (CDPs) appear synchronously along the lumbo-sacral segments. These CDPs have different shapes and magnitudes. Previous work has indicated that some CDPs appear to be specially associated with the activation of spinal pathways that lead to primary afferent depolarization and presynaptic inhibition. Visual detection and classification of these CDPs provides relevant information on the functional organization of the neural networks involved in the control of sensory information and allows the characterization of the changes produced by acute nerve and spinal lesions. We now present a novel feature extraction approach for signal classification, applied to CDP detection. The method is based on an intuitive procedure. We first remove by convolution the noise from the CDPs recorded in each given spinal segment. Then, we assign a coefficient for each main local maximum of the signal using its amplitude and distance to the most important maximum of the signal. These coefficients will be the input for the subsequent classification algorithm. In particular, we employ gradient boosting classification trees. This combination of approaches allows a faster and more accurate discrimination of CDPs than is obtained by other methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Protein interaction networks have become a tool to study biological processes, either for predicting molecular functions or for designing proper new drugs to regulate the main biological interactions. Furthermore, such networks are known to be organized in sub-networks of proteins contributing to the same cellular function. However, the protein function prediction is not accurate and each protein has traditionally been assigned to only one function by the network formalism. By considering the network of the physical interactions between proteins of the yeast together with a manual and single functional classification scheme, we introduce a method able to reveal important information on protein function, at both micro- and macro-scale. In particular, the inspection of the properties of oscillatory dynamics on top of the protein interaction network leads to the identification of misclassification problems in protein function assignments, as well as to unveil correct identification of protein functions. We also demonstrate that our approach can give a network representation of the meta-organization of biological processes by unraveling the interactions between different functional classes

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Automatic blood glucose classification may help specialists to provide a better interpretation of blood glucose data, downloaded directly from patients glucose meter and will contribute in the development of decision support systems for gestational diabetes. This paper presents an automatic blood glucose classifier for gestational diabetes that compares 6 different feature selection methods for two machine learning algorithms: neural networks and decision trees. Three searching algorithms, Greedy, Best First and Genetic, were combined with two different evaluators, CSF and Wrapper, for the feature selection. The study has been made with 6080 blood glucose measurements from 25 patients. Decision trees with a feature set selected with the Wrapper evaluator and the Best first search algorithm obtained the best accuracy: 95.92%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prevalence of vitamin B12 deficiency is very common in elderly people and can reach values as high as 40.5% of the population. It can be the result of the interaction among several factors. Vitamin B12 deficiencies have been associated with neurological, cognitive deterioration, haematological abnormalities and cardiovascular diseases that have an important influence on the health of the elderly and their quality of life. It is necessary to approach the problems arisen from the lack of data relative to them. The main objective of this thesis was to analyse the evolution of vitamin B12 status and related parameters, lipid and haematological profiles and their relationship to health risk factors, and to functional and cognitive status over one year and to determine the effect of an oral supplementation of 500 μg of cyanocobalamin for a short period of 28 days. An additional objective was to analyze the possible effects of medicine intakes on vitamin B status. Three studies were performed: a) a one year longitudinal follow-up with four measure points; b) an intervention study providing an oral liquid supplement of 500 μg of cyanocobalamin for a 28 days period; and c) analysis of the possible effect of medication intake on vitamin B status using the ATC classification of medicines. The participants for these studies were recruited from nursing homes for the elderly in the Region of Madrid. Sixty elders (mean age 84 _ 7y, 19 men and 41 women) were recruited for Study I and 64 elders (mean age 82 _ 7y, 24 men and 40 women) for Study II. For Study III, baseline data from the initially recruited participants of the first two studies were used. An informed consent was obtained from all participants or their mentors. The studies were approved by the Ethical Committee of the University of Granada. Blood samples were obtained at each examination date and were analyzed for serum cobalamin, holoTC, serum and RBC folate and total homocysteine according to laboratory standard procedures. The haematological parameters analyzed were haematocrit, haemoglobin and MCV. For the lipid profile TG, total cholesterol, LDL- and HDLcholesterol were analyzed. Anthropometric measures (BMI, skinfolds [triceps and subscapular], waist girth and waist to hip ratio), functional tests (hand grip, arm and leg strength tests, static balance) and MMSE were obtained or administered by trained personal. The vitamin B12 supplement of Study II was administered with breakfast and the medication intake was taken from the residents’ anamnesis. Data were analyzed by parametric and non-parametric statistics depending on the obtained data. Comparisons were done using the appropriate ANOVAs or non-parametric tests. Pearsons’ partial correlations with the variable “time” as control were used to define the association of the analyzed parameters. XIII The results showed that: A) Over one year, in relationship to vitamin B status, serum cobalamin decreased, serum folate and mean corpuscular volumen increased significantly and total homocysteine concentrations were stable. Regarding blood lipid profile, triglycerides increased and HDL-cholesterol decreased significantly. Regarding selected anthropometric measurements, waist circumference increased significantly. No significant changes were observed for the rest of parameters. B) Prevalence of hyperhomocysteinemia was high in the elderly studied, ranging from 60% to 90 % over the year depending on the cut-off used for the classification. LDL-cholesterol values were high, especially among women, and showed a tendency to increase over the year. Results of the balance test showed a deficiency and a tendency to decrease; this indicates that the population studied is at high risk for falls. Lower extremity muscular function was deficient and showed a tendency to decrease. A highly significant relationship was observed between the skinfold of the triceps and blood lipid profile. C) Low cobalamin concentrations correlated significantly with low MMSE scores in the elderly studied. No correlations were observed between vitamin B12 status and functional parameters. D) Regarding vitamin B12 status, holo-transcobalamin seems to be more sensitive for diagnosis; 5-10% of the elderly had a deficiency using serum cobalamin as a criterion, and 45-52% had a deficiency when using serum holotranscobalamin as a criterion. E) 500 μg of cyanocobalamin administered orally during 28 days significantly improved vitamin B12 status and significantly decreased total homocysteine concentrations in institutionalized elderly. No effect of the intervention was observed on functional and cognitive parameters. F) The relative change (%) of improvement of vitamin B12 status was higher when using serum holo-transcobalamin as a criterion than serum cobalamin. G) Antiaenemic drug intake normalized cobalamin, urologic drugs and corticosteroids serum folate, and psychoanaleptics holo-transcobalamin levels. Drugs treating pulmonary obstruction increased total homocysteine concentration significantly. H) The daily mean drug intake was 5.1. Fiftynine percent of the elderly took medication belonging to 5 or more different ATC groups. The most prevalent were psycholeptic (53%), antiacid (53%) and antithrombotic (47%) drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Al ser la naturaleza objeto de representación artística por el hombre, campos tan diversos como el arte y la ciencia forestal pueden compartir sus orígenes. Los pinos son un género botánico repartido por la cuenca mediterránea capaces de suscitar emociones al haber sido sujetos de lo que fue una innovación cultural. Se propone que los pinos pudieron ser objeto de las primeras representaciones artísticas de los antiguos pobladores de la Península Ibérica. La metodología en la selección de resultados se basa en patrones morfológicos: patrón 1 (plántulas de pino en sus primeras etapas de crecimiento), patrón 2 (dibujos asimilables a ramas de pino) y patrón 3 (dibujos de pinos de gran porte). La presentación de los resultados se estructura en: parte I (referente a las representaciones artísticas estimadas como de pinos en la prehistoria, diferenciando el arte paleolítico del post-paleolítico), parte II (contempla los resultados encontrados en el repertorio iconográfico del arte Íbero y Celtíbero) y parte III (presenta una selección de resultados del arte romano en Hispania). Las diferentes etapas artísticas se articulan comenzando con una introducción, seguida de enfoques multidisciplinares que incluyen una visión histórica del paisaje o de la ecología de la vegetación. A continuación se exponen los resultados de la revisión realizada en cada etapa histórica y el estudio y descripción de las piezas seleccionadas (localización geográfica, datación arqueológica, clasificación genérica de técnica, materiales, dimensiones, iconografía, contexto cultural y procedencia) y por último su discusión en cuanto a su adscripción al género Pinus y a la flora presente en el entorno, caso de ser posible. Esta información se completa con gráficos, diagramas, mapas y tablas situándolas en su contexto arqueológico y cronológico, aportando datos sobre el carácter utilitario, simbólico o ideológico de los pinos, cuya pervivencia se manifiesta en ser protagonistas de gran número de festejos en la España rural de nuestros días. SUMMARY Nature has been represented in paintings since ancient times, which enables fields of study as separate as art and forest science to share a common origin. Pine-tress belong to a botanical genus widely distributed throughout the Mediterranean basin, which are capable of rising emotion and being a representation of what at that time was cultural innovation, subsequently becoming symbols. In this dissertation we hypothesise that pine forest may have been one of the first artistic representations of the ancient dwellers of the Iberian Peninsula. The methodology used for the selection of results is based on morphological patterns, i.e.: Patern 1 (pine seedlings at their first developmental stages), Pattern 2 (drawings associated with pine branches and shoots), and Pattern 3 (paintings of large pine-trees). Results are shown according to the following structure: Part I (relating to prehistoric paintings identified as pines and differentiating Paleolithic from Post-Paleolithic art), Part II (involves the results gathered concerning Iberian and Celtiberian iconographic art) and Part III (including a selection of Roman art in Hispania concerning pine representations). The different artistic periods are linked beginning by an Introduction, followed by a multidisciplinary approach ranging from a historical landscape analysis to plant ecology within a Mediterranean context. Thereafter, results are presented by assessing each historical period and by describing each of the particular art pieces subjected to investigation (geographical location, archaeological date, generic classification of the art technique, materials, dimensions, iconography and cultural context and origin). Finally, the results are discussed according to their ascription to the Pinus genus and when possible, in relation with the surrounding flora. The information provided is complemented with diagrams, maps and tables to enable its understanding within a chronological and archaeological context and providing evidence for the functional, symbolic and ideological character of pines, which are still alive in Spain in the form of many rural feasts with particular kinds of celebrations where this species plays a central role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By combining complex network theory and data mining techniques, we provide objective criteria for optimization of the functional network representation of generic multivariate time series. In particular, we propose a method for the principled selection of the threshold value for functional network reconstruction from raw data, and for proper identification of the network's indicators that unveil the most discriminative information on the system for classification purposes. We illustrate our method by analysing networks of functional brain activity of healthy subjects, and patients suffering from Mild Cognitive Impairment, an intermediate stage between the expected cognitive decline of normal aging and the more pronounced decline of dementia. We discuss extensions of the scope of the proposed methodology to network engineering purposes, and to other data mining tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Active optical sensing (LIDAR and light curtain transmission) devices mounted on a mobile platform can correctly detect, localize, and classify trees. To conduct an evaluation and comparison of the different sensors, an optical encoder wheel was used for vehicle odometry and provided a measurement of the linear displacement of the prototype vehicle along a row of tree seedlings as a reference for each recorded sensor measurement. The field trials were conducted in a juvenile tree nursery with one-year-old grafted almond trees at Sierra Gold Nurseries, Yuba City, CA, United States. Through these tests and subsequent data processing, each sensor was individually evaluated to characterize their reliability, as well as their advantages and disadvantages for the proposed task. Test results indicated that 95.7% and 99.48% of the trees were successfully detected with the LIDAR and light curtain sensors, respectively. LIDAR correctly classified, between alive or dead tree states at a 93.75% success rate compared to 94.16% for the light curtain sensor. These results can help system designers select the most reliable sensor for the accurate detection and localization of each tree in a nursery, which might allow labor-intensive tasks, such as weeding, to be automated without damaging crops.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grouping urban bus routes is necessary when there are evidences of significant differences among them. In Jiménez et al. (2013), a reduced sample of routes was grouped into clusters utilizing kinematic measured data. As a further step, in this paper, the remaining urban bus routes of a city, for which no kinematic measurements are available, are classified. For such purpose we use macroscopic geographical and functional variables to describe each route, while the clustering process is performed by means of a neural network. Limitations caused by reduced training samples are solved using the bootstrap method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whole brain resting state connectivity is a promising biomarker that might help to obtain an early diagnosis in many neurological diseases, such as dementia. Inferring resting-state connectivity is often based on correlations, which are sensitive to indirect connections, leading to an inaccurate representation of the real backbone of the network. The precision matrix is a better representation for whole brain connectivity, as it considers only direct connections. The network structure can be estimated using the graphical lasso (GL), which achieves sparsity through l1-regularization on the precision matrix. In this paper, we propose a structural connectivity adaptive version of the GL, where weaker anatomical connections are represented as stronger penalties on the corre- sponding functional connections. We applied beamformer source reconstruction to the resting state MEG record- ings of 81 subjects, where 29 were healthy controls, 22 were single-domain amnestic Mild Cognitive Impaired (MCI), and 30 were multiple-domain amnestic MCI. An atlas-based anatomical parcellation of 66 regions was ob- tained for each subject, and time series were assigned to each of the regions. The fiber densities between the re- gions, obtained with deterministic tractography from diffusion-weighted MRI, were used to define the anatomical connectivity. Precision matrices were obtained with the region specific time series in five different frequency bands. We compared our method with the traditional GL and a functional adaptive version of the GL, in terms of log-likelihood and classification accuracies between the three groups. We conclude that introduc- ing an anatomical prior improves the expressivity of the model and, in most cases, leads to a better classification between groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The European chestnut (Castanea sativa Mill.) is a multipurpose species that has been widely cultivated around the Mediterranean basin since ancient times. New varieties were brought to the Iberian Peninsula during the Roman Empire, which coexist since then with native populations that survived the last glaciation. The relevance of chestnut cultivation has being steadily growing since the Middle Ages, until the rural decline of the past century put a stop to this trend. Forest fires and diseases were also major factors. Chestnut cultivation is gaining momentum again due to its economic (wood, fruits) and ecologic relevance, and represents currently an important asset in many rural areas of Europe. In this Thesis we apply different molecular tools to help improve current management strategies. For this study we have chosen El Bierzo (Castile and Leon, NW Spain), which has a centenary tradition of chestnut cultivation and management, and also presents several unique features from a genetic perspective (next paragraph). Moreover, its nuts are widely appreciated in Spain and abroad for their organoleptic properties. We have focused our experimental work on two major problems faced by breeders and the industry: the lack of a fine-grained genetic characterization and the need for new strategies to control blight disease. To characterize with sufficient detail the genetic diversity and structure of El Bierzo orchards, we analyzed DNA from 169 trees grafted for nut production covering the entire region. We also analyzed 62 nuts from all traditional varieties. El Bierzo constitutes an outstanding scenario to study chestnut genetics and the influence of human management because: (i) it is located at one extreme of the distribution area; (ii) it is a major glacial refuge for the native species; (iii) it has a long tradition of human management (since Roman times, at least); and (iv) its geographical setting ensures an unusual degree of genetic isolation. Thirteen microsatellite markers provided enough informativeness and discrimination power to genotype at the individual level. Together with an unexpected level of genetic variability, we found evidence of genetic structure, with three major gene pools giving rise to the current population. High levels of genetic differentiation between groups supported this organization. Interestingly, genetic structure does not match with spatial boundaries, suggesting that the exchange of material and cultivation practices have strongly influenced natural gene flow. The microsatellite markers selected for this study were also used to classify a set of 62 samples belonging to all traditional varieties. We identified several cases of synonymies and homonymies, evidencing the need to substitute traditional classification systems with new tools for genetic profiling. Management and conservation strategies should also benefit from these tools. The avenue of high-throughput sequencing technologies, combined with the development of bioinformatics tools, have paved the way to study transcriptomes without the need for a reference genome. We took advantage of RNA sequencing and de novo assembly tools to determine the transcriptional landscape of chestnut in response to blight disease. In addition, we have selected a set of candidate genes with high potential for developing resistant varieties via genetic engineering. Our results evidenced a deep transcriptional reprogramming upon fungal infection. The plant hormones ET and JA appear to orchestrate the defensive response. Interestingly, our results also suggest a role for auxins in modulating such response. Many transcription factors were identified in this work that interact with promoters of genes involved in disease resistance. Among these genes, we have conducted a functional characterization of a two major thaumatin-like proteins (TLP) that belongs to the PR5 family. Two genes encoding chestnut cotyledon TLPs have been previously characterized, termed CsTL1 and CsTL2. We substantiate here their protective role against blight disease for the first time, including in silico, in vitro and in vivo evidence. The synergy between TLPs and other antifungal proteins, particularly endo-p-1,3-glucanases, bolsters their interest for future control strategies based on biotechnological approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ulmus minor es una especie arbórea originaria de Europa cuyas poblaciones han sido diezmadas por el hongo patógeno causante de la enfermedad de la grafiosis. La conservación de los olmos exige plantearse su propagación a través de plantaciones y conocer mejor su ecología y biología. Ulmus minor es un árbol de ribera, pero frecuentemente se encuentra alejado del cauce de arroyos y ríos, donde la capa freática sufre fuertes oscilaciones. Por ello, nuestra hipótesis general es que esta especie es moderadamente resistente tanto a la inundación como a la sequía. El principal objetivo de esta tesis doctoral es entender desde un punto de vista funcional la respuesta de U. minor a la inundación, la sequía y la infección por O. novo-ulmi; los factores que posiblemente más influyen en la distribución actual de U. minor. Con este objetivo se persigue dar continuidad a los esfuerzos de conservación de esta especie que desde hace años se dedican en varios centros de investigación a nivel mundial, ya que, entender mejor los mecanismos que contribuyen a la resistencia de U. minor ante la inoculación con O. novo-ulmi y factores de estrés abiótico ayudará en la selección y propagación de genotipos resistentes a la grafiosis. Se han planteado tres experimentos en este sentido. Primero, se ha comparado la tolerancia de brinzales de U. minor y U. laevis – otro olmo ibérico – a una inmersión controlada con el fin de evaluar su tolerancia a la inundación y comprender los mecanismos de aclimatación. Segundo, se ha comparado la tolerancia de brinzales de U. minor y Quercus ilex – una especie típica de ambientes Mediterránea secos – a la falta de agua en el suelo con el fin de evaluar el grado de tolerancia y los mecanismos de aclimatación a la sequía. El hecho de comparar dos especies contrastadas responde al interés en entender mejor cuales son los procesos que conducen a la muerte de una planta en condiciones de sequía – asunto sobre el que hay una interesante discusión desde hace algunos años. En tercer lugar, con el fin de entender mejor la resistencia de algunos genotipos de U. minor a la grafiosis, se han estudiado las diferencias fisiológicas y químicas constitutivas e inducidas por O. novo-ulmi entre clones de U. minor seleccionados a priori por su variable grado de resistencia a esta enfermedad. En el primer experimento se observó que los brinzales de U. minor sobrevivieron 60 días inmersos en una piscina con agua no estancada hasta una altura de 2-3 cm por encima del cuello de la raíz. A los 60 días, los brinzales de U. laevis se sacaron de la piscina y, a lo largo de las siguientes semanas, fueron capaces de recuperar las funciones fisiológicas que habían sido alteradas anteriormente. La conductividad hidráulica de las raíces y la tasa de asimilación de CO2 neta disminuyeron en ambas especies. Por el contrario, la tasa de respiración de hojas, tallos y raíces aumentó en las primeras semanas de la inundación, posiblemente en relación al aumento de energía necesario para desarrollar mecanismos de aclimatación a la inundación, como la hipertrofia de las lenticelas que se observó en ambas especies. Por ello, el desequilibrio del balance de carbono de la planta podría ser un factor relevante en la mortalidad de las plantas ante inundaciones prolongadas. Las plantas de U. minor (cultivadas en envases de 16 litros a media sombra) sobrevivieron por un prolongado periodo de tiempo en verano sin riego; la mitad de las plantas murieron tras 90 días sin riego. El cierre de los estomas y la pérdida de hojas contribuyeron a ralentizar las pérdidas de agua y tolerar la sequía en U. minor. Las obvias diferencias en tolerancia a la sequía con respecto a Q. ilex se reflejaron en la distinta capacidad para ralentizar la aparición del estrés hídrico tras dejar de regar y para transportar agua en condiciones de elevada tensión en el xilema. Más relevante es que las plantas con evidentes síntomas de decaimiento previo a su muerte exhibieron pérdidas de conductividad hidráulica en las raíces del 80% en ambas especies, mientras que las reservas de carbohidratos apenas variaron y lo hicieron de forma desigual en ambas especies. Árboles de U. minor de 5 y 6 años de edad (plantados en eras con riego mantenido) exhibieron una respuesta a la inoculación con O. novo-ulmi consistente con ensayos previos de resistencia. La conductividad hidráulica del tallo, el potencial hídrico foliar y la tasa de asimilación de CO2 neta disminuyeron significativamente en relación a árboles inoculados con agua, pero solo en los clones susceptibles. Este hecho enlaza con el perfil químico “más defensivo” de los clones resistentes, es decir, con los mayores niveles de suberina, ácidos grasos y compuestos fenólicos en estos clones que en los susceptibles. Ello podría restringir la propagación del hongo en el árbol y preservar el comportamiento fisiológico de los clones resistentes al inocularlos con el patógeno. Los datos indican una respuesta fisiológica común de U. minor a la inundación, la sequía y la infección por O. novo-ulmi: pérdida de conductividad hidráulica, estrés hídrico y pérdida de ganancia neta de carbono. Pese a ello, U. minor desarrolla varios mecanismos que le confieren una capacidad moderada para vivir en suelos temporalmente anegados o secos. Por otro lado, el perfil químico es un factor relevante en la resistencia de ciertos genotipos a la grafiosis. Futuros estudios deberían examinar como este perfil químico y la resistencia a la grafiosis se ven alteradas por el estrés abiótico. ABSTRACT Ulmus minor is a native European elm species whose populations have been decimated by the Dutch elm disease (DED). An active conservation of this species requires large-scale plantations and a better understanding of its biology and ecology. U. minor generally grows close to water channels. However, of the Iberian riparian tree species, U. minor is the one that spread farther away from rivers and streams. For these reasons, we hypothesize that this species is moderately tolerant to both flooding and drought stresses. The main aim of the present PhD thesis is to better understand the functional response of U. minor to the abiotic stresses – flooding and drought – and the biotic stress – DED – that can be most influential on its distribution. The overarching goal is to aid in the conservation of this emblematic species through a better understanding of the mechanisms that contribute to resistance to abiotic and biotic stresses; an information that can help in the selection of resistant genotypes and their expansion in large-scale plantations. To this end, three experiments were set up. First, we compared the tolerance to experimental immersion between seedlings of U. minor and U. laevis – another European riparian elm species – in order to assess their degree of tolerance and understand the mechanisms of acclimation to this stress. Second, we investigated the tolerance to drought of U. minor seedlings in comparison with Quercus ilex (an oak species typical of dry Mediterranean habitats). Besides assessing and understanding U. minor tolerance to drought at the seedling stage, the aim was to shed light into the functional alterations that trigger drought-induced plant mortality – a matter of controversy in the last years. Third, we studied constitutive and induced physiological and biochemical differences among clones of variable DED resistance, before and following inoculation with Ophiostoma novo-ulmi. The goal is to shed light into the factors of DED resistance that is evident in some genotypes of U. minor, but not others. Potted seedlings of U. minor survived for 60 days immersed in a pool with running water to approximately 2-3 cm above the stem collar. By this time, U. minor seedlings died, whereas U. laevis seedlings moved out of the pool were able to recover most physiological functions that had been altered by flooding. For example, root hydraulic conductivity and leaf photosynthetic CO2 uptake decreased in both species; while respiration initially increased with flooding in leaves, stems and roots possibly to respond to energy demands associated to mechanisms of acclimation to soil oxygen deficiency; as example, a remarkable hypertrophy of lenticels was soon observed in flooded seedlings of both species. Therefore, the inability to maintain a positive carbon balance somehow compromises seedling survival under flooding, earlier in U. minor than U. laevis, partly explaining their differential habitats. Potted seedlings of U. minor survived for a remarkable long time without irrigation – half of plants dying only after 90 days of no irrigation in conditions of high vapour pressure deficit typical of summer. Some mechanisms that contributed to tolerate drought were leaf shedding and stomata closure, which reduced water loss and the risk of xylem cavitation. Obviously, U. minor was less tolerant to drought than Q. ilex, differences in drought tolerance resulting mostly from the distinct capacity to postpone water stress and conduct water under high xylem tension among species. More relevant was that plants of both species exhibited similar symptoms of root hydraulic failure (i.e. approximately 80% loss of hydraulic conductivity), but a slight and variable depletion of non-structural carbohydrate reserves preceding dieback. Five- and six-year-old trees of U. minor (planted in the field with supplementary watering) belonging to clones of contrasted susceptibility to DED exhibited a different physiological response to inoculation with O. novo-ulmi. Stem hydraulic conductivity, leaf water potential and photosynthetic CO2 uptake decreased significantly relative to control trees inoculated with water only in DED susceptible clones. This is consistent with the “more defensive” chemical profile observed in resistant clones, i.e. with higher levels of saturated hydrocarbons (suberin and fatty acids) and phenolic compounds than in susceptible clones. These compounds could restrict the spread of O. novo-ulmi and contribute to preserving the near-normal physiological function of resistant trees when exposed to the pathogen. These results evidence common physiological responses of U. minor to flooding, drought and pathogen infection leading to xylem water disruption, leaf water stress and reduced net carbon gain. Still, seedlings of U. minor develop various mechanisms of acclimation to abiotic stresses that can play a role in surviving moderate periods of flood and drought. The chemical profile appears to be an important factor for the resistance of some genotypes of U. minor to DED. How abiotic stresses such as flooding and drought affect the capacity of resistant U. minor clones to face O. novo-ulmi is a key question that must be contemplated in future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El daño cerebral adquirido (DCA) es un problema social y sanitario grave, de magnitud creciente y de una gran complejidad diagnóstica y terapéutica. Su elevada incidencia, junto con el aumento de la supervivencia de los pacientes, una vez superada la fase aguda, lo convierten también en un problema de alta prevalencia. En concreto, según la Organización Mundial de la Salud (OMS) el DCA estará entre las 10 causas más comunes de discapacidad en el año 2020. La neurorrehabilitación permite mejorar el déficit tanto cognitivo como funcional y aumentar la autonomía de las personas con DCA. Con la incorporación de nuevas soluciones tecnológicas al proceso de neurorrehabilitación se pretende alcanzar un nuevo paradigma donde se puedan diseñar tratamientos que sean intensivos, personalizados, monitorizados y basados en la evidencia. Ya que son estas cuatro características las que aseguran que los tratamientos son eficaces. A diferencia de la mayor parte de las disciplinas médicas, no existen asociaciones de síntomas y signos de la alteración cognitiva que faciliten la orientación terapéutica. Actualmente, los tratamientos de neurorrehabilitación se diseñan en base a los resultados obtenidos en una batería de evaluación neuropsicológica que evalúa el nivel de afectación de cada una de las funciones cognitivas (memoria, atención, funciones ejecutivas, etc.). La línea de investigación en la que se enmarca este trabajo de investigación pretende diseñar y desarrollar un perfil cognitivo basado no sólo en el resultado obtenido en esa batería de test, sino también en información teórica que engloba tanto estructuras anatómicas como relaciones funcionales e información anatómica obtenida de los estudios de imagen. De esta forma, el perfil cognitivo utilizado para diseñar los tratamientos integra información personalizada y basada en la evidencia. Las técnicas de neuroimagen representan una herramienta fundamental en la identificación de lesiones para la generación de estos perfiles cognitivos. La aproximación clásica utilizada en la identificación de lesiones consiste en delinear manualmente regiones anatómicas cerebrales. Esta aproximación presenta diversos problemas relacionados con inconsistencias de criterio entre distintos clínicos, reproducibilidad y tiempo. Por tanto, la automatización de este procedimiento es fundamental para asegurar una extracción objetiva de información. La delineación automática de regiones anatómicas se realiza mediante el registro tanto contra atlas como contra otros estudios de imagen de distintos sujetos. Sin embargo, los cambios patológicos asociados al DCA están siempre asociados a anormalidades de intensidad y/o cambios en la localización de las estructuras. Este hecho provoca que los algoritmos de registro tradicionales basados en intensidad no funcionen correctamente y requieran la intervención del clínico para seleccionar ciertos puntos (que en esta tesis hemos denominado puntos singulares). Además estos algoritmos tampoco permiten que se produzcan deformaciones grandes deslocalizadas. Hecho que también puede ocurrir ante la presencia de lesiones provocadas por un accidente cerebrovascular (ACV) o un traumatismo craneoencefálico (TCE). Esta tesis se centra en el diseño, desarrollo e implementación de una metodología para la detección automática de estructuras lesionadas que integra algoritmos cuyo objetivo principal es generar resultados que puedan ser reproducibles y objetivos. Esta metodología se divide en cuatro etapas: pre-procesado, identificación de puntos singulares, registro y detección de lesiones. Los trabajos y resultados alcanzados en esta tesis son los siguientes: Pre-procesado. En esta primera etapa el objetivo es homogeneizar todos los datos de entrada con el objetivo de poder extraer conclusiones válidas de los resultados obtenidos. Esta etapa, por tanto, tiene un gran impacto en los resultados finales. Se compone de tres operaciones: eliminación del cráneo, normalización en intensidad y normalización espacial. Identificación de puntos singulares. El objetivo de esta etapa es automatizar la identificación de puntos anatómicos (puntos singulares). Esta etapa equivale a la identificación manual de puntos anatómicos por parte del clínico, permitiendo: identificar un mayor número de puntos lo que se traduce en mayor información; eliminar el factor asociado a la variabilidad inter-sujeto, por tanto, los resultados son reproducibles y objetivos; y elimina el tiempo invertido en el marcado manual de puntos. Este trabajo de investigación propone un algoritmo de identificación de puntos singulares (descriptor) basado en una solución multi-detector y que contiene información multi-paramétrica: espacial y asociada a la intensidad. Este algoritmo ha sido contrastado con otros algoritmos similares encontrados en el estado del arte. Registro. En esta etapa se pretenden poner en concordancia espacial dos estudios de imagen de sujetos/pacientes distintos. El algoritmo propuesto en este trabajo de investigación está basado en descriptores y su principal objetivo es el cálculo de un campo vectorial que permita introducir deformaciones deslocalizadas en la imagen (en distintas regiones de la imagen) y tan grandes como indique el vector de deformación asociado. El algoritmo propuesto ha sido comparado con otros algoritmos de registro utilizados en aplicaciones de neuroimagen que se utilizan con estudios de sujetos control. Los resultados obtenidos son prometedores y representan un nuevo contexto para la identificación automática de estructuras. Identificación de lesiones. En esta última etapa se identifican aquellas estructuras cuyas características asociadas a la localización espacial y al área o volumen han sido modificadas con respecto a una situación de normalidad. Para ello se realiza un estudio estadístico del atlas que se vaya a utilizar y se establecen los parámetros estadísticos de normalidad asociados a la localización y al área. En función de las estructuras delineadas en el atlas, se podrán identificar más o menos estructuras anatómicas, siendo nuestra metodología independiente del atlas seleccionado. En general, esta tesis doctoral corrobora las hipótesis de investigación postuladas relativas a la identificación automática de lesiones utilizando estudios de imagen médica estructural, concretamente estudios de resonancia magnética. Basándose en estos cimientos, se han abrir nuevos campos de investigación que contribuyan a la mejora en la detección de lesiones. ABSTRACT Brain injury constitutes a serious social and health problem of increasing magnitude and of great diagnostic and therapeutic complexity. Its high incidence and survival rate, after the initial critical phases, makes it a prevalent problem that needs to be addressed. In particular, according to the World Health Organization (WHO), brain injury will be among the 10 most common causes of disability by 2020. Neurorehabilitation improves both cognitive and functional deficits and increases the autonomy of brain injury patients. The incorporation of new technologies to the neurorehabilitation tries to reach a new paradigm focused on designing intensive, personalized, monitored and evidence-based treatments. Since these four characteristics ensure the effectivity of treatments. Contrary to most medical disciplines, it is not possible to link symptoms and cognitive disorder syndromes, to assist the therapist. Currently, neurorehabilitation treatments are planned considering the results obtained from a neuropsychological assessment battery, which evaluates the functional impairment of each cognitive function (memory, attention, executive functions, etc.). The research line, on which this PhD falls under, aims to design and develop a cognitive profile based not only on the results obtained in the assessment battery, but also on theoretical information that includes both anatomical structures and functional relationships and anatomical information obtained from medical imaging studies, such as magnetic resonance. Therefore, the cognitive profile used to design these treatments integrates information personalized and evidence-based. Neuroimaging techniques represent an essential tool to identify lesions and generate this type of cognitive dysfunctional profiles. Manual delineation of brain anatomical regions is the classical approach to identify brain anatomical regions. Manual approaches present several problems related to inconsistencies across different clinicians, time and repeatability. Automated delineation is done by registering brains to one another or to a template. However, when imaging studies contain lesions, there are several intensity abnormalities and location alterations that reduce the performance of most of the registration algorithms based on intensity parameters. Thus, specialists may have to manually interact with imaging studies to select landmarks (called singular points in this PhD) or identify regions of interest. These two solutions have the same inconvenient than manual approaches, mentioned before. Moreover, these registration algorithms do not allow large and distributed deformations. This type of deformations may also appear when a stroke or a traumatic brain injury (TBI) occur. This PhD is focused on the design, development and implementation of a new methodology to automatically identify lesions in anatomical structures. This methodology integrates algorithms whose main objective is to generate objective and reproducible results. It is divided into four stages: pre-processing, singular points identification, registration and lesion detection. Pre-processing stage. In this first stage, the aim is to standardize all input data in order to be able to draw valid conclusions from the results. Therefore, this stage has a direct impact on the final results. It consists of three steps: skull-stripping, spatial and intensity normalization. Singular points identification. This stage aims to automatize the identification of anatomical points (singular points). It involves the manual identification of anatomical points by the clinician. This automatic identification allows to identify a greater number of points which results in more information; to remove the factor associated to inter-subject variability and thus, the results are reproducible and objective; and to eliminate the time spent on manual marking. This PhD proposed an algorithm to automatically identify singular points (descriptor) based on a multi-detector approach. This algorithm contains multi-parametric (spatial and intensity) information. This algorithm has been compared with other similar algorithms found on the state of the art. Registration. The goal of this stage is to put in spatial correspondence two imaging studies of different subjects/patients. The algorithm proposed in this PhD is based on descriptors. Its main objective is to compute a vector field to introduce distributed deformations (changes in different imaging regions), as large as the deformation vector indicates. The proposed algorithm has been compared with other registration algorithms used on different neuroimaging applications which are used with control subjects. The obtained results are promising and they represent a new context for the automatic identification of anatomical structures. Lesion identification. This final stage aims to identify those anatomical structures whose characteristics associated to spatial location and area or volume has been modified with respect to a normal state. A statistical study of the atlas to be used is performed to establish which are the statistical parameters associated to the normal state. The anatomical structures that may be identified depend on the selected anatomical structures identified on the atlas. The proposed methodology is independent from the selected atlas. Overall, this PhD corroborates the investigated research hypotheses regarding the automatic identification of lesions based on structural medical imaging studies (resonance magnetic studies). Based on these foundations, new research fields to improve the automatic identification of lesions in brain injury can be proposed.