3 resultados para Frontal lobe
em Universidad Politécnica de Madrid
Resumo:
During sentence processing there is a preference to treat the first noun phrase found as the subject and agent, unless marked the other way. This preference would lead to a conflict in thematic role assignment when the syntactic structure conforms to a non-canonical object-before-subject pattern. Left perisylvian and fronto-parietal brain networks have been found to be engaged by increased computational demands during sentence comprehension, while event-reated brain potentials have been used to study the on-line manifestation of these demands. However, evidence regarding the spatiotemporal organization of brain networks in this domain is scarce. In the current study we used Magnetoencephalography to track spatio-temporally brain activity while Spanish speakers were reading subject- and object-first cleft sentences. Both kinds of sentences remained ambiguous between a subject-first or an object-first interpretation up to the appearance of the second argument. Results show the time-modulation of a frontal network at the disambiguation point of object-first sentences. Moreover, the time windows where these effects took place have been previously related to thematic role integration (300–500 ms) and to sentence reanalysis and resolution of conflicts during processing (beyond 500 ms post-stimulus). These results point to frontal cognitive control as a putative key mechanism which may operate when a revision of the sentence structure and meaning is necessary
Resumo:
Accumulating evidence suggests a role for the medial temporal lobe (MTL) in working memory (WM). However, little is known concerning its functional interactions with other cortical regions in the distributed neural network subserving WM. To reveal these, we availed of subjects with MTL damage and characterized changes in effective connectivity while subjects engaged in WM task. Specifically, we compared dynamic causal models, extracted from magnetoencephalographic recordings during verbal WM encoding, in temporal lobe epilepsy patients (with left hippocampal sclerosis) and controls. Bayesian model comparison indicated that the best model (across subjects) evidenced bilateral, forward, and backward connections, coupling inferior temporal cortex (ITC), inferior frontal cortex (IFC), and MTL. MTL damage weakened backward connections from left MTL to left ITC, a decrease accompanied by strengthening of (bidirectional) connections between IFC and MTL in the contralesional hemisphere. These findings provide novel evidence concerning functional interactions between nodes of this fundamental cognitive network and sheds light on how these interactions are modified as a result of focal damage to MTL. The findings highlight that a reduced (top-down) influence of the MTL on ipsilateral language regions is accompanied by enhanced reciprocal coupling in the undamaged hemisphere providing a first demonstration of “connectional diaschisis.”
Resumo:
Neuroimaging studies provide evidence for organized intrinsic activity under task-free conditions. This activity serves functionally relevant brain systems supporting cognition. Here, we analyze changes in resting-state functional connectivity after videogame practice applying a test–retest design. Twenty young females were selected from a group of 100 participants tested on four standardized cognitive ability tests. The practice and control groups were carefully matched on their ability scores. The practice group played during two sessions per week across 4 weeks (16 h total) under strict supervision in the laboratory, showing systematic performance improvements in the game. A group independent component analysis (GICA) applying multisession temporal concatenation on test–retest resting-state fMRI, jointly with a dual-regression approach, was computed. Supporting the main hypothesis, the key finding reveals an increased correlated activity during rest in certain predefined resting state networks (albeit using uncorrected statistics) attributable to practice with the cognitively demanding tasks of the videogame. Observed changes were mainly concentrated on parietofrontal networks involved in heterogeneous cognitive functions.