7 resultados para Frobenius-Schur Indicator
em Universidad Politécnica de Madrid
Resumo:
Because climate can affect xylem cell anatomy, series of intra-annual cell anatomical features have the potential to retrospectively supply seasonal climatic information. In this study, we explored the ability to extract information about water stress conditions from tracheid features of the Mediterranean conifer Juniperus thurifera L. Tracheidograms of four climatic years from two drought-sensitive sites in Spain were compared to evaluate whether it is possible to link intra-annual cell size patterns to seasonal climatic conditions. Results indicated site-specific anatomical adjustment such as smaller and thicker tracheids at the dryer site but also showed a strong climatic imprint on the intra-annual pattern of tracheid size. Site differences in cell size reflected expected structural adjustments against cavitation failures. Differences between intra-annual patterns, however, indicated a response to seasonal changes in water availability whereby cells formed under drought conditions were smaller and thicker, and vice versa. This relationship was more manifest and stable at the dryer site
Resumo:
The airline industry is often unstable and unpredictable forcing airlines to restructure and create flexible strategies that can respond to external operating environmental changes. In turbulent and competitive environments, firms with higher flexibility perform better and the value of these flexibilities depends on factors of uncertainty in the competitive environment. A model is sought for and arrived at, that shows how an airline business model will function in an uncertain environment with the least reduction in business performance over time. An analysis of the business model flexibility of 17 Airlines from Asia, Europe and Oceania, that is done with core competence as the indicator reveals a picture of inconsistencies in the core competence strategy of certain airlines and the corresponding reduction in business performance. The performance variations are explained from a service oriented core competence strategy employed by airlines that ultimately enables them in having a flexible business model that not only increases business performance but also helps in reducing the uncertainties in the internal and external operating environments.
Resumo:
Improved management of nitrogen (N) in agriculture is necessary to achieve a sustainable balance between the production of food and other biomass, and the unwanted effects of N on water pollution, greenhouse gas emissions, biodiversity deterioration and human health. To analyse farm N-losses and the complex interactions within farming systems, efficient methods for identifying emissions hotspots and evaluating mitigation measures are therefore needed. The present paper aims to fill this gap at the farm and landscape scales. Six agricultural landscapes in Poland (PL), the Netherlands (NL), France (FR), Italy (IT), Scotland (UK) and Denmark (DK) were studied, and a common method was developed for undertaking farm inventories and the derivation of farm N balances, N surpluses and for evaluating uncertainty for the 222 farms and 11 440 ha of farmland included in the study. In all landscapes, a large variation in the farm N surplus was found, and thereby a large potential for reductions. The highest average N surpluses were found in the most livestock-intensive landscapes of IT, FR, and NL; on average 202 ± 28, 179 ± 63 and 178 ± 20 kg N ha−1 yr−1, respectively. All landscapes showed hotspots, especially from livestock farms, including a special UK case with large-scale landless poultry farming. Overall, the average N surplus from the land-based UK farms dominated by extensive sheep and cattle grazing was only 31 ± 10 kg N ha−1 yr−1, but was similar to the N surplus of PL and DK (122 ± 20 and 146 ± 55 kg N ha−1 yr−1, respectively) when landless poultry farming was included. We found farm N balances to be a useful indicator for N losses and the potential for improving N management. Significant correlations to N surplus were found, both with ammonia air concentrations and nitrate concentrations in soils and groundwater, measured during the period of N management data collection in the landscapes from 2007–2009. This indicates that farm N surpluses may be used as an independent dataset for validation of measured and modelled N emissions in agricultural landscapes. No significant correlation was found with N measured in surface waters, probably because of spatial and temporal variations in groundwater buffering and biogeochemical reactions affecting N flows from farm to surface waters. A case study of the development in N surplus from the landscape in DK from 1998–2008 showed a 22% reduction related to measures targeted at N emissions from livestock farms. Based on the large differences in N surplus between average N management farms and the most modern and N-efficient farms, it was concluded that additional N-surplus reductions of 25–50%, as compared to the present level, were realistic in all landscapes. The implemented N-surplus method was thus effective for comparing and synthesizing results on farm N emissions and the potentials of mitigation options. It is recommended for use in combination with other methods for the assessment of landscape N emissions and farm N efficiency, including more detailed N source and N sink hotspot mapping, measurements and modelling.
Resumo:
La hipótesis de esta tesis es: "La optimización de la ventana considerando simultáneamente aspectos energéticos y aspectos relativos a la calidad ambiental interior (confort higrotérmico, lumínico y acústico) es compatible, siempre que se conozcan y consideren las sinergias existentes entre ellos desde las primeras fases de diseño". En la actualidad se desconocen las implicaciones de muchas de las decisiones tomadas en torno a la ventana; para que su eficiencia en relación a todos los aspectos mencionados pueda hacerse efectiva es necesaria una herramienta que aporte más información de la actualmente disponible en el proceso de diseño, permitiendo así la optimización integral, en función de las circunstancias específicas de cada proyecto. En la fase inicial de esta investigación se realiza un primer acercamiento al tema, a través del estado del arte de la ventana; analizando la normativa existente, los componentes, las prestaciones, los elementos experimentales y la investigación. Se observa que, en ocasiones, altos requisitos de eficiencia energética pueden suponer una disminución de las prestaciones del sistema en relación con la calidad ambiental interior, por lo que surge el interés por integrar al análisis energético aspectos relativos a la calidad ambiental interior, como son las prestaciones lumínicas y acústicas y la renovación de aire. En este punto se detecta la necesidad de realizar un estudio integral que incorpore los distintos aspectos y evaluar las sinergias que se dan entre las distintas prestaciones que cumple la ventana. Además, del análisis de las soluciones innovadoras y experimentales se observa la dificultad de determinar en qué medida dichas soluciones son eficientes, ya que son soluciones complejas, no caracterizadas y que no están incorporadas en las metodologías de cálculo o en las bases de datos de los programas de simulación. Por lo tanto, se plantea una segunda necesidad, generar una metodología experimental para llevar a cabo la caracterización y el análisis de la eficiencia de sistemas innovadores. Para abordar esta doble necesidad se plantea la optimización mediante una evaluación del elemento acristalado que integre la eficiencia energética y la calidad ambiental interior, combinando la investigación teórica y la investigación experimental. En el ámbito teórico, se realizan simulaciones, cálculos y recopilación de información de distintas tipologías de hueco, en relación con cada prestación de forma independiente (acústica, iluminación, ventilación). A pesar de haber partido con un enfoque integrador, resulta difícil esa integración detectándose una carencia de herramientas disponible. En el ámbito experimental se desarrolla una metodología para la evaluación del rendimiento y de aspectos ambientales de aplicación a elementos innovadores de difícil valoración mediante la metodología teórica. Esta evaluación consiste en el análisis comparativo experimental entre el elemento innovador y un elemento estándar; para llevar a cabo este análisis se han diseñado dos espacios iguales, que denominamos módulos de experimentación, en los que se han incorporado los dos sistemas; estos espacios se han monitorizado, obteniéndose datos de consumo, temperatura, iluminancia y humedad relativa. Se ha realizado una medición durante un periodo de nueve meses y se han analizado y comparado los resultados, obteniendo así el comportamiento real del sistema. Tras el análisis teórico y el experimental, y como consecuencia de esa necesidad de integrar el conocimiento existente se propone una herramienta de evaluación integral del elemento acristalado. El desarrollo de esta herramienta se realiza en base al procedimiento de diagnóstico de calidad ambiental interior (CAI) de acuerdo con la norma UNE 171330 “Calidad ambiental en interiores”, incorporando el factor de eficiencia energética. De la primera parte del proceso, la parte teórica y el estado del arte, se obtendrán los parámetros que son determinantes y los valores de referencia de dichos parámetros. En base a los parámetros relevantes obtenidos se da forma a la herramienta, que consiste en un indicador de producto para ventanas que integra todos los factores analizados y que se desarrolla según la Norma UNE 21929 “Sostenibilidad en construcción de edificios. Indicadores de sostenibilidad”. ABSTRACT The hypothesis of this thesis is: "The optimization of windows considering energy and indoor environmental quality issues simultaneously (hydrothermal comfort, lighting comfort, and acoustic comfort) is compatible, provided that the synergies between these issues are known and considered from the early stages of design ". The implications of many of the decisions made on this item are currently unclear. So that savings can be made, an effective tool is needed to provide more information during the design process than the currently available, thus enabling optimization of the system according to the specific circumstances of each project. The initial phase deals with the study from an energy efficiency point of view, performing a qualitative and quantitative analysis of commercial, innovative and experimental windows. It is observed that sometimes, high-energy efficiency requirements may mean a reduction in the system's performance in relation to user comfort and health, that's why there is an interest in performing an integrated analysis of indoor environment aspects and energy efficiency. At this point a need for a comprehensive study incorporating the different aspects is detected, to evaluate the synergies that exist between the various benefits that meet the window. Moreover, from the analysis of experimental and innovative windows, a difficulty in establishing to what extent these solutions are efficient is observed; therefore, there is a need to generate a methodology for performing the analysis of the efficiency of the systems. Therefore, a second need arises, to generate an experimental methodology to perform characterization and analysis of the efficiency of innovative systems. To address this dual need, the optimization of windows by an integrated evaluation arises, considering energy efficiency and indoor environmental quality, combining theoretical and experimental research. In the theoretical field, simulations and calculations are performed; also information about the different aspects of indoor environment (acoustics, lighting, ventilation) is gathered independently. Despite having started with an integrative approach, this integration is difficult detecting lack available tools. In the experimental field, a methodology for evaluating energy efficiency and indoor environment quality is developed, to be implemented in innovative elements which are difficult to evaluate using a theoretical methodology This evaluation is an experimental comparative analysis between an innovative element and a standard element. To carry out this analysis, two equal spaces, called experimental cells, have been designed. These cells have been monitored, obtaining consumption, temperature, luminance and relative humidity data. Measurement has been performed during nine months and results have been analyzed and compared, obtaining results of actual system behavior. To advance this optimization, windows have been studied from the point of view of energy performance and performance in relation to user comfort and health: thermal comfort, acoustic comfort, lighting comfort and air quality; proposing the development of a methodology for an integrated analysis including energy efficiency and indoor environment quality. After theoretical and experimental analysis and as a result of the need to integrate existing knowledge, a comprehensive evaluation procedure for windows is proposed. This evaluation procedure is developed according to the UNE 171330 "Indoor Environmental Quality", also incorporating energy efficiency and cost as factors to evaluate. From the first part of the research process, outstanding parameters are chosen and reference values of these parameters are set. Finally, based on the parameters obtained, an indicator is proposed as windows product indicator. The indicator integrates all factors analyzed and is developed according to ISO 21929-1:2011"Sustainability in building construction. Sustainability indicators. Part 1: Framework for the development of indicators and a core set of indicators for buildings".
Resumo:
Changing factors (mainly traffic intensity and weather conditions) affecting road conditions require a suitable optimal speed at any time. To solve this problem, variable speed limit systems (VSL) ? as opposed to fixed limits ? have been developed in recent decades. This term has included a number of speed management systems, most notably dynamic speed limits (DSL). In order to avoid the indiscriminate use of both terms in the literature, this paper proposes a simple classification and offers a review of some experiences, how their effects are evaluated and their results This study also presents a key indicator, which measures the speed homogeneity and a methodology to obtain the data based on floating cars and GPS technology applying it to a case study on a section of the M30 urban motorway in Madrid (Spain).
Resumo:
How can we measure ‘quality of life’? The sustainable refurbishment goes beyond strictly energy aspects. Sustainability indicators are needed to facilitate data collection and to provide information which does not require too time-consuming calculations. Thus, you can offer an idea of the extent and quality of the rehabilitation before starting the project and, also, the obtained results can be evaluated in an agile way after the refurbishment. From a list of social indicators gathered from different methods, sustainability assessment tools and International and European standards, three social indicators are proposed: Users Satisfaction, Participation Agreement and Quality of Life. This paper shows the development of Quality of Life social indicator, the more closely related to the main objectives of Researchand Development Project “Sustainable Refurbishment”: improving energy efficiency and wellbeing of users in existing residential buildings. Finally, this social indicator is applied to a real case study in Málaga (Spain).
Resumo:
The carbonation of concrete or the chlorides ingress in such quantity to reach the level of bars is triggers of reinforcement corrosion. One of the most significant effects of reinforcing steel corrosion on reinforced concrete structures is the decline in the ductility-related properties of the steel. Reinforcement ductility has a decisive effect on the overall ductility of reinforced concrete structures. Different Codes classify the type of steel depending on their ductility defined by the minimum values of several parameters. Using indicators of ductility associating different properties can be advantageous on many occasions. It is considered necessary to define the ductility by means of a single parameter that considers strength values and deformation simultaneously. There are a number of criteria for defining steel ductility by a single parameter. The present experimental study addresses the variation in the ductility of concrete-embedded steel bars when exposed to accelerated corrosion. This paper analyzes the suitability of a new indicator of ductility used in corroded bars.