89 resultados para Free Boundary Value Problem
em Universidad Politécnica de Madrid
Resumo:
We consider a mathematical model related to the stationary regime of a plasma magnetically confined in a Stellarator device in the nuclear fusion. The mathematical problem may be reduced to an nonlinear elliptic inverse nonlocal two dimensional free{boundary problem. The nonlinear terms involving the unknown functions of the problem and its rearrangement. Our main goal is to determinate the existence and the estimate on the location and size of region where the solution is nonnegative almost everywhere (corresponding to the plasma region in the physical model)
Resumo:
En este trabajo se han analizado varios problemas en el contexto de la elasticidad no lineal basándose en modelos constitutivos representativos. En particular, se han analizado problemas relacionados con el fenómeno de perdida de estabilidad asociada con condiciones de contorno en el caso de material reforzados con fibras. Cada problema se ha formulado y se ha analizado por separado en diferentes capítulos. En primer lugar se ha mostrado el análisis del gradiente de deformación discontinuo para un material transversalmente isótropo, en particular, el modelo del material considerado consiste de una base neo-Hookeana isótropa incrustada con fibras de refuerzo direccional caracterizadas con un solo parámetro. La solución de este problema se vincula con instabilidades que dan lugar al mecanismo de fallo conocido como banda de cortante. La perdida de elipticidad de las ecuaciones diferenciales de equilibrio es una condición necesaria para que aparezca este tipo de soluciones y por tanto las inestabilidades asociadas. En segundo lugar se ha analizado una deformación combinada de extensión, inación y torsión de un tubo cilíndrico grueso donde se ha encontrado que la deformación citada anteriormente puede ser controlada solo para determinadas direcciones de las fibras refuerzo. Para entender el comportamiento elástico del tubo considerado se ha ilustrado numéricamente los resultados obtenidos para las direcciones admisibles de las fibras de refuerzo bajo la deformación considerada. En tercer lugar se ha estudiado el caso de un tubo cilíndrico grueso reforzado con dos familias de fibras sometido a cortante en la dirección azimutal para un modelo de refuerzo especial. En este problema se ha encontrado que las inestabilidades que aparecen en el material considerado están asociadas con lo que se llama soluciones múltiples de la ecuación diferencial de equilibrio. Se ha encontrado que el fenómeno de instabilidad ocurre en un estado de deformación previo al estado de deformación donde se pierde la elipticidad de la ecuación diferencial de equilibrio. También se ha demostrado que la condición de perdida de elipticidad y ^W=2 = 0 (la segunda derivada de la función de energía con respecto a la deformación) son dos condiciones necesarias para la existencia de soluciones múltiples. Finalmente, se ha analizado detalladamente en el contexto de elipticidad un problema de un tubo cilíndrico grueso sometido a una deformación combinada en las direcciones helicoidal, axial y radial para distintas geotermias de las fibras de refuerzo . In the present work four main problems have been addressed within the framework of non-linear elasticity based on representative constitutive models. Namely, problems related to the loss of stability phenomena associated with boundary value problems for fibre-reinforced materials. Each of the considered problems is formulated and analysed separately in different chapters. We first start with the analysis of discontinuous deformation gradients for a transversely isotropic material under plane deformation. In particular, the material model is an augmented neo-Hookean base with a simple unidirectional reinforcement characterised by a single parameter. The solution of this problem is related to material instabilities and it is associated with a shear band-type failure mode. The loss of ellipticity of the governing differential equations is a necessary condition for the existence of these material instabilities. The second problem involves a detailed analysis of the combined non-linear extension, inflation and torsion of a thick-walled circular cylindrical tube where it has been found that the aforementioned deformation is controllable only for certain preferred directions of transverse isotropy. Numerical results have been illustrated to understand the elastic behaviour of the tube for the admissible preferred directions under the considered deformation. The third problem deals with the analysis of a doubly fibre-reinforced thickwalled circular cylindrical tube undergoing pure azimuthal shear for a special class of the reinforcing model where multiple non-smooth solutions emerge. The associated instability phenomena are found to occur prior to the point where the nominal stress tensor changes monotonicity in a particular direction. It has been also shown that the loss of ellipticity condition that arises from the equilibrium equation and ^W=2 = 0 (the second derivative of the strain-energy function with respect to the deformation) are equivalent necessary conditions for the emergence of multiple solutions for the considered material. Finally, a detailed analysis in the basis of the loss of ellipticity of the governing differential equations for a combined helical, axial and radial elastic deformations of a fibre-reinforced circular cylindrical tube is carried out.
Resumo:
A mathematical formulation for finite strain elasto plastic consolidation of fully saturated soil media is presented. Strong and weak forms of the boundary-value problem are derived using both the material and spatial descriptions. The algorithmic treatment of finite strain elastoplasticity for the solid phase is based on multiplicative decomposition and is coupled with the algorithm for fluid flow via the Kirchhoff pore water pressure. Balance laws are written for the soil-water mixture following the motion of the soil matrix alone. It is shown that the motion of the fluid phase only affects the Jacobian of the solid phase motion, and therefore can be characterized completely by the motion of the soil matrix. Furthermore, it is shown from energy balance consideration that the effective, or intergranular, stress is the appropriate measure of stress for describing the constitutive response of the soil skeleton since it absorbs all the strain energy generated in the saturated soil-water mixture. Finally, it is shown that the mathematical model is amenable to consistent linearization, and that explicit expressions for the consistent tangent operators can be derived for use in numerical solutions such as those based on the finite element method.
Resumo:
We aim at understanding the multislip behaviour of metals subject to irreversible deformations at small-scales. By focusing on the simple shear of a constrained single-crystal strip, we show that discrete Dislocation Dynamics (DD) simulations predict a strong latent hardening size effect, with smaller being stronger in the range [1.5 µm, 6 µm] for the strip height. We attempt to represent the DD pseudo-experimental results by developing a flow theory of Strain Gradient Crystal Plasticity (SGCP), involving both energetic and dissipative higher-order terms and, as a main novelty, a strain gradient extension of the conventional latent hardening. In order to discuss the capability of the SGCP theory proposed, we implement it into a Finite Element (FE) code and set its material parameters on the basis of the DD results. The SGCP FE code is specifically developed for the boundary value problem under study so that we can implement a fully implicit (Backward Euler) consistent algorithm. Special emphasis is placed on the discussion of the role of the material length scales involved in the SGCP model, from both the mechanical and numerical points of view.
Resumo:
We aim at understanding the multislip behaviour of metals subject to irreversible deformations at small-scales. By focusing on the simple shear of a constrained single-crystal strip, we show that discrete Dislocation Dynamics (DD) simulations predict a strong latent hardening size effect, with smaller being stronger in the range [1.5 µm, 6 µm] for the strip height. We attempt to represent the DD pseudo-experimental results by developing a flow theory of Strain Gradient Crystal Plasticity (SGCP), involving both energetic and dissipative higher-order terms and, as a main novelty, a strain gradient extension of the conventional latent hardening. In order to discuss the capability of the SGCP theory proposed, we implement it into a Finite Element (FE) code and set its material parameters on the basis of the DD results. The SGCP FE code is specifically developed for the boundary value problem under study so that we can implement a fully implicit (Backward Euler) consistent algorithm. Special emphasis is placed on the discussion of the role of the material length scales involved in the SGCP model, from both the mechanical and numerical points of view.
Resumo:
En el presente artículo se muestran las ventajas de la programación en paralelo resolviendo numéricamente la ecuación del calor en dos dimensiones a través del método de diferencias finitas explícito centrado en el espacio FTCS. De las conclusiones de este trabajo se pone de manifiesto la importancia de la programación en paralelo para tratar problemas grandes, en los que se requiere un elevado número de cálculos, para los cuales la programación secuencial resulta impracticable por el elevado tiempo de ejecución. En la primera sección se describe brevemente los conceptos básicos de programación en paralelo. Seguidamente se resume el método de diferencias finitas explícito centrado en el espacio FTCS aplicado a la ecuación parabólica del calor. Seguidamente se describe el problema de condiciones de contorno y valores iniciales específico al que se va a aplicar el método de diferencias finitas FTCS, proporcionando pseudocódigos de una implementación secuencial y dos implementaciones en paralelo. Finalmente tras la discusión de los resultados se presentan algunas conclusiones. In this paper the advantages of parallel computing are shown by solving the heat conduction equation in two dimensions with the forward in time central in space (FTCS) finite difference method. Two different levels of parallelization are consider and compared with traditional serial procedures. We show in this work the importance of parallel computing when dealing with large problems that are impractical or impossible to solve them with a serial computing procedure. In the first section a summary of parallel computing approach is presented. Subsequently, the forward in time central in space (FTCS) finite difference method for the heat conduction equation is outline, describing how the heat flow equation is derived in two dimensions and the particularities of the finite difference numerical technique considered. Then, a specific initial boundary value problem is solved by the FTCS finite difference method and serial and parallel pseudo codes are provided. Finally after results are discussed some conclusions are presented.
Resumo:
This paper addresses the problem of optimal constant continuous low-thrust transfer in the context of the restricted two-body problem (R2BP). Using the Pontryagin’s principle, the problem is formulated as a two point boundary value problem (TPBVP) for a Hamiltonian system. Lie transforms obtained through the Deprit method allow us to obtain the canonical mapping of the phase flow as a series in terms of the order of magnitude of the thrust applied. The reachable set of states starting from a given initial condition using optimal control policy is obtained analytically. In addition, a particular optimal transfer can be computed as the solution of a non-linear algebraic equation. Se investiga el uso de series y transformadas de Lie en problemas de optimización de trayectorias de satélites impulsados por motores de bajo empuje
Resumo:
One key issue in the simulation of bare electrodynamic tethers (EDTs) is the accurate and fast computation of the collected current, an ambient dependent operation necessary to determine the Lorentz force for each time step. This paper introduces a novel semianalytical solution that allows researchers to compute the current distribution along the tether efficient and effectively under orbital-motion-limited (OML) and beyond OML conditions, i.e., if tether radius is greater than a certain ambient dependent threshold. The method reduces the original boundary value problem to a couple of nonlinear equations. If certain dimensionless variables are used, the beyond OML effect just makes the tether characteristic length L ∗ larger and it is decoupled from the current determination problem. A validation of the results and a comparison of the performance in terms of the time consumed is provided, with respect to a previous ad hoc solution and a conventional shooting method.
Resumo:
Esta tesis se basa en el estudio de la trayectoria que pasa por dos puntos en el problema de los dos cuerpos, inicialmente desarrollado por Lambert, del que toma su nombre. En el pasado, el Problema de Lambert se ha utilizado para la determinación de órbitas a partir de observaciones astronómicas de los cuerpos celestes. Actualmente, se utiliza continuamente en determinación de órbitas, misiones planetaria e interplanetarias, encuentro espacial e interceptación, o incluso en corrección de orbitas. Dada su gran importancia, se decide investigar especialmente sobre su solución y las aplicaciones en las misiones espaciales actuales. El campo de investigación abierto, es muy amplio, así que, es necesario determinar unos objetivos específicos realistas, en el contexto de ejecución de una Tesis, pero que sirvan para mostrar con suficiente claridad el potencial de los resultados aportados en este trabajo, e incluso poder extenderlos a otros campos de aplicación. Como resultado de este análisis, el objetivo principal de la Tesis se enfoca en el desarrollo de algoritmos para resolver el Problema de Lambert, que puedan ser aplicados de forma muy eficiente en las misiones reales donde aparece. En todos los desarrollos, se ha considerado especialmente la eficiencia del cálculo computacional necesario en comparación con los métodos existentes en la actualidad, destacando la forma de evitar la pérdida de precisión inherente a este tipo de algoritmos y la posibilidad de aplicar cualquier método iterativo que implique el uso de derivadas de cualquier orden. En busca de estos objetivos, se desarrollan varias soluciones para resolver el Problema de Lambert, todas ellas basadas en la resolución de ecuaciones transcendentes, con las cuales, se alcanzan las siguientes aportaciones principales de este trabajo: • Una forma genérica completamente diferente de obtener las diversas ecuaciones para resolver el Problema de Lambert, mediante desarrollo analítico, desde cero, a partir de las ecuaciones elementales conocidas de las cónicas (geométricas y temporal), proporcionando en todas ellas fórmulas para el cálculo de derivadas de cualquier orden. • Proporcionar una visión unificada de las ecuaciones más relevantes existentes, mostrando la equivalencia con variantes de las ecuaciones aquí desarrolladas. • Deducción de una nueva variante de ecuación, el mayor logro de esta Tesis, que destaca en eficiencia sobre todas las demás (tanto en coste como en precisión). • Estudio de la sensibilidad de la solución ante variación de los datos iniciales, y como aplicar los resultados a casos reales de optimización de trayectorias. • También, a partir de los resultados, es posible deducir muchas propiedades utilizadas en la literatura para simplificar el problema, en particular la propiedad de invariancia, que conduce al Problema Transformado Simplificado. ABSTRACT This thesis is based on the study of the two-body, two-point boundary-value problem, initially developed by Lambert, from who it takes its name. Since the past, Lambert's Problem has been used for orbit determination from astronomical observations of celestial bodies. Currently, it is continuously used in orbit determinations, for planetary and interplanetary missions, space rendezvous, and interception, or even in orbit corrections. Given its great importance, it is decided to investigate their solution and applications in the current space missions. The open research field is very wide, it is necessary to determine specific and realistic objectives in the execution context of a Thesis, but that these serve to show clearly enough the potential of the results provided in this work, and even to extended them to other areas of application. As a result of this analysis, the main aim of the thesis focuses on the development of algorithms to solve the Lambert’s Problem which can be applied very efficiently in real missions where it appears. In all these developments, it has been specially considered the efficiency of the required computational calculation compared to currently existing methods, highlighting how to avoid the loss of precision inherent in such algorithms and the possibility to apply any iterative method involving the use of derivatives of any order. Looking to meet these objectives, a number of solutions to solve the Lambert’s Problem are developed, all based on the resolution of transcendental equations, with which the following main contributions of this work are reached: • A completely different generic way to get the various equations to solve the Lambert’s Problem by analytical development, from scratch, from the known elementary conic equations (geometrics and temporal), by providing, in all cases, the calculation of derivatives of any order. • Provide a unified view of most existing relevant equations, showing the equivalence with variants of the equations developed here. • Deduction of a new variant of equation, the goal of this Thesis, which emphasizes efficiency (both computational cost and accuracy) over all other. • Estudio de la sensibilidad de la solución ante la variación de las condiciones iniciales, mostrando cómo aprovechar los resultados a casos reales de optimización de trayectorias. • Study of the sensitivity of the solution to the variation of the initial data, and how to use the results to real cases of trajectories’ optimization. • Additionally, from results, it is possible to deduce many properties used in literature to simplify the problem, in particular the invariance property, which leads to a simplified transformed problem.
Resumo:
We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge–Kutta total variation diminishing for time integration.
Resumo:
The option value problem with two costs is written as a variational inequality. The advantage of this formulation is that it takes place in a fixed domain. Thus no front tracking is needed for numerical approximation of the free boundary. An iterative algorithm is proposed which can be used to solve the nonlinear system obtained by finite differences or finite elements procedures. Especial care has to be taken in the design of differences finites schemes o finite elements due to the degeneracy of the differential operator. These schemes can be absortion or convection dominated nearly to the axis. This is a preliminary note to the study of this kind of problems.
Resumo:
En esta tesis se investiga la interacción entre un fluido viscoso y un cuerpo sólido en presencia de una superficie libre. El problema se expresa teóricamente poniendo especial atención a los aspectos de conservación de energía y de la interacción del fluido con el cuerpo. El problema se considera 2D y monofásico, y un desarrollo matemático permite una descomposición de los términos disipativos en términos relacionados con la superficie libre y términos relacionados con la enstrofía. El modelo numérico utilizado en la tesis se basa en el método sin malla Smoothed Particle Hydrodynamics (SPH). De manera análoga a lo que se hace a nivel continuo, las propiedades de conservación se estudian en la tesis con el sistema discreto de partículas. Se tratan también las condiciones de contorno de un cuerpo que se mueve en un flujo viscoso, implementadas con el método ghost-fluid. Se ha desarrollado un algoritmo explícito de interacción fluido / cuerpo. Se han documentado algunos casos de modo detallado con el objetivo de comprobar la capacidad del modelo para reproducir correctamente la disipación de energía y el movimiento del cuerpo. En particular se ha investigado la atenuación de una onda estacionaria, comparando la simulación numérica con predicciones teóricas. Se han realizado otras pruebas para monitorizar la disipación de energía para flujos más violentos que implican la fragmentación de la superficie libre. La cantidad de energía disipada con los diferentes términos se ha evaluado en los casos estudiados con el modelo numérico. Se han realizado otras pruebas numéricas para verificar la técnica de modelización de la interacción fluido / cuerpo, concretamente las fuerzas ejercidas por las olas en cuerpos con formas simples, y el equilibrio de un cuerpo flotante con una forma compleja. Una vez que el modelo numérico ha sido validado, se han realizado simulaciones numéricas para obtener una comprensión más completa de la física implicada en casos (casi) realistas sobre los había aspectos que no se conocían suficientemente. En primer lugar se ha estudiado el el flujo alrededor de un cilindro bajo la superficie libre. El estudio se ha realizado con un número de Reynolds moderado, para un rango de inmersiones del cilindro y números de Froude. La solución numérica permite una investigación de los patrones complejos que se producen. La estela del cilindro interactúa con la superficie libre. Se han identificado algunos inestabilidades características. El segundo estudio se ha realizado sobre el problema de sloshing, tanto experimentalmente como numéricamente. El análisis se restringe a aguas poco profundas y con oscilación horizontal, pero se ha estudiado un gran número de condiciones, lo que lleva a una comprensión bastante completa de los sistemas de onda involucradas. La última parte de la tesis trata también sobre un problema de sloshing pero esta vez el tanque está oscilando con rotación y hay acoplamiento con un sistema mecánico. El sistema se llama pendulum-TLD (Tuned Liquid Damper - con líquido amortiguador). Este tipo de sistema se utiliza normalmente para la amortiguación de las estructuras civiles. El análisis se ha realizado analíticamente, numéricamente y experimentalmente utilizando líquidos con viscosidades diferentes, centrándose en características no lineales y mecanismos de disipación. ABSTRA C T The subject of the present thesis is the interaction between a viscous fluid and a solid body in the presence of a free surface. The problem is expressed first theoretically with a particular focus on the energy conservation and the fluid-body interaction. The problem is considered 2D and monophasic, and some mathematical development allows for a decomposition of the energy dissipation into terms related to the Free Surface and others related to the enstrophy. The numerical model used on the thesis is based on Smoothed Particle Hydrodynamics (SPH): a computational method that works by dividing the fluid into particles. Analogously to what is done at continuum level, the conservation properties are studied on the discrete system of particles. Additionally the boundary conditions for a moving body in a viscous flow are treated and discussed using the ghost-fluid method. An explicit algorithm for handling fluid-body coupling is also developed. Following these theoretical developments on the numerical model, some test cases are devised in order to test the ability of the model to correctly reproduce the energy dissipation and the motion of the body. The attenuation of a standing wave is used to compare what is numerically simulated to what is theoretically predicted. Further tests are done in order to monitor the energy dissipation in case of more violent flows involving the fragmentation of the free-surface. The amount of energy dissipated with the different terms is assessed with the numerical model. Other numerical tests are performed in order to test the fluid/body interaction method: forces exerted by waves on simple shapes, and equilibrium of a floating body with a complex shape. Once the numerical model has been validated, numerical tests are performed in order to get a more complete understanding of the physics involved in (almost) realistic cases. First a study is performed on the flow passing a cylinder under the free surface. The study is performed at moderate Reynolds numbers, for various cylinder submergences, and various Froude numbers. The capacity of the numerical solver allows for an investigation of the complex patterns which occur. The wake from the cylinder interacts with the free surface, and some characteristical flow mechanisms are identified. The second study is done on the sloshing problem, both experimentally and numerically. The analysis is restrained to shallow water and horizontal excitation, but a large number of conditions are studied, leading to quite a complete understanding of the wave systems involved. The last part of the thesis still involves a sloshing problem but this time the tank is rolling and there is coupling with a mechanical system. The system is named pendulum-TLD (Tuned Liquid Damper). This kind of system is normally used for damping of civil structures. The analysis is then performed analytically, numerically and experimentally for using liquids with different viscosities, focusing on non-linear features and dissipation mechanisms.
Resumo:
Amundsenisen is an ice field, 80 km2 in area, located in Southern Spitsbergen, Svalbard. Radio-echo sounding measurements at 20 MHz show high intensity returns from a nearly flat basal reflector at four zones, all of them with ice thickness larger than 500m. These reflections suggest possible subglacial lakes. To determine whether basal liquid water is compatible with current pressure and temperature conditions, we aim at applying a thermo mechanical model with a free boundary at the bed defined as solution of a Stefan problem for the interface ice-subglaciallake. The complexity of the problem suggests the use of a bi-dimensional model, but this requires that well-defined flowlines across the zones with suspected subglacial lakes are available. We define these flow lines from the solution of a three-dimensional dynamical model, and this is the main goal of the present contribution. We apply a three-dimensional full-Stokes model of glacier dynamics to Amundsenisen icefield. We are mostly interested in the plateau zone of the icefield, so we introduce artificial vertical boundaries at the heads of the main outlet glaciers draining Amundsenisen. At these boundaries we set velocity boundary conditions. Velocities near the centres of the heads of the outlets are known from experimental measurements. The velocities at depth are calculated according to a SIA velocity-depth profile, and those at the rest of the transverse section are computed following Nye’s (1952) model. We select as southeastern boundary of the model domain an ice divide, where we set boundary conditions of zero horizontal velocities and zero vertical shear stresses. The upper boundary is a traction-free boundary. For the basal boundary conditions, on the zones of suspected subglacial lakes we set free-slip boundary conditions, while for the rest of the basal boundary we use a friction law linking the sliding velocity to the basal shear stress,in such a way that, contrary to the shallow ice approximation, the basal shear stress is not equal to the basal driving stress but rather part of the solution.
Resumo:
Abstract?We consider a mathematical model related to the stationary regime of a plasma of fusion nuclear, magnetically confined in a Stellarator device. Using the geometric properties of the fusion device, a suitable system of coordinates and averaging methods, the mathematical problem may be reduced to a two dimensional free boundary problem of nonlocal type, where the corresponding differential equation is of the Grad?Shafranov type. The current balance within each flux magnetic gives us the possibility to define the third covariant magnetic field component with respect to the averaged poloidal flux function. We present here some numerical experiences and we give some numerical approach for the averaged poloidal flux and for the third covariant magnetic field component.
Resumo:
The group vaporization of a monodisperse fuel-spray jet discharging into a hot coflowing gaseous stream is investigated for steady flow by numerical and asymptotic methods with a two-continua formulation used for the description of the gas and liquid phases. The jet is assumed to be slender and laminar, as occurs when the Reynolds number is moderately large, so that the boundary-layer form of the conservation equations can be employed in the analysis. Two dimensionless parameters are found to control the flow structure, namely the spray dilution parameter 1, defined as the mass of liquid fuel per unit mass of gas in the spray stream, and the group vaporization parameter e, defined as the ratio of the characteristic time of spray evolution due to droplet vaporization to the characteristic diffusion time across the jet. It is observed that, for the small values of e often encountered in applications, vaporization occurs only in a thin layer separating the spray from the outer droplet-free stream. This regime of sheath vaporization, which is controlled by heat conduction, is amenable to a simplified asymptotic description, independent of ε,in which the location of the vaporization layer is determined numerically as a free boundary in a parabolic problem involving matching of the separate solutions in the external streams, with appropriate jump conditions obtained from analysis of the quasi-steady vaporization front. Separate consideration of dilute and dense sprays, corresponding, respectively, to the asymptotic limits λ<<1 and λ>>1, enables simplified descriptions to be obtained for the different flow variables, including explicit analytic expressions for the spray penetration distance.