5 resultados para Fraudulent conveyance
em Universidad Politécnica de Madrid
Resumo:
Unattended Wireless Sensor Networks (UWSNs) operate in autonomous or disconnected mode: sensed data is collected periodically by an itinerant sink. Between successive sink visits, sensor-collected data is subject to some unique vulnerabilities. In particular, while the network is unattended, a mobile adversary (capable of subverting up to a fraction of sensors at a time) can migrate between compromised sets of sensors and inject fraudulent data. In this paper, we provide two collaborative authentication techniques that allow an UWSN to maintain integrity and authenticity of sensor data-in the presence of a mobile adversary-until the next sink visit. Proposed schemes use simple, standard, and inexpensive symmetric cryptographic primitives, coupled with key evolution and few message exchanges. We study their security and effectiveness, both analytically and via simulations. We also assess their robustness and show how to achieve the desired trade-off between performance and security.
Resumo:
In this paper, we propose a system for authenticating local bee pollen against fraudulent samples using image processing and classification techniques. Our system is based on the colour properties of bee pollen loads and the use of one-class classifiers to reject unknown pollen samples. The latter classification techniques allow us to tackle the major difficulty of the problem, the existence of many possible fraudulent pollen types. Also presented is a multi-classifier model with an ambiguity discovery process to fuse the output of the one-class classifiers. The method is validated by authenticating Spanish bee pollen types, the overall accuracy of the final system of being 94%. Therefore, the system is able to rapidly reject the non-local pollen samples with inexpensive hardware and without the need to send the product to the laboratory.
Resumo:
In this paper we present a global description of a telematic voting system based on advanced cryptography and on the use of smart cards (VOTESCRIPT system) whose most outstanding characteristic is the ability to verify that the tally carried out by the system is correct, meaning that the results published by the system correspond with votes cast. The VOTESCRIPT system provides an individual verification mechanism allowing each Voter to confirm whether his vote has been correctly counted. The innovation with respect to other solutions lies in the fact that the verification process is private so that Voters have no way of proving what they voted in the presence of a non-authorized third party. Vote buying and selling or any other kind of extortion are prevented. The existence of the Intervention Systems allows the whole electoral process to be controlled by groups of citizens or authorized candidatures. In addition to this the system can simply make an audit not only of the final results, but also of the whole process. Global verification provides the Scrutineers with robust cryptographic evidence which enables unequivocal proof if the system has operated in a fraudulent way.
Resumo:
La minería de datos es un campo de las ciencias de la computación referido al proceso que intenta descubrir patrones en grandes volúmenes de datos. La minería de datos busca generar información similar a la que podría producir un experto humano. Además es el proceso de descubrir conocimientos interesantes, como patrones, asociaciones, cambios, anomalías y estructuras significativas a partir de grandes cantidades de datos almacenadas en bases de datos, data warehouses o cualquier otro medio de almacenamiento de información. El aprendizaje automático o aprendizaje de máquinas es una rama de la Inteligencia artificial cuyo objetivo es desarrollar técnicas que permitan a las computadoras aprender. De forma más concreta, se trata de crear programas capaces de generalizar comportamientos a partir de una información no estructurada suministrada en forma de ejemplos. La minería de datos utiliza métodos de aprendizaje automático para descubrir y enumerar patrones presentes en los datos. En los últimos años se han aplicado las técnicas de clasificación y aprendizaje automático en un número elevado de ámbitos como el sanitario, comercial o de seguridad. Un ejemplo muy actual es la detección de comportamientos y transacciones fraudulentas en bancos. Una aplicación de interés es el uso de las técnicas desarrolladas para la detección de comportamientos fraudulentos en la identificación de usuarios existentes en el interior de entornos inteligentes sin necesidad de realizar un proceso de autenticación. Para comprobar que estas técnicas son efectivas durante la fase de análisis de una determinada solución, es necesario crear una plataforma que de soporte al desarrollo, validación y evaluación de algoritmos de aprendizaje y clasificación en los entornos de aplicación bajo estudio. El proyecto planteado está definido para la creación de una plataforma que permita evaluar algoritmos de aprendizaje automático como mecanismos de identificación en espacios inteligentes. Se estudiarán tanto los algoritmos propios de este tipo de técnicas como las plataformas actuales existentes para definir un conjunto de requisitos específicos de la plataforma a desarrollar. Tras el análisis se desarrollará parcialmente la plataforma. Tras el desarrollo se validará con pruebas de concepto y finalmente se verificará en un entorno de investigación a definir. ABSTRACT. The data mining is a field of the sciences of the computation referred to the process that it tries to discover patterns in big volumes of information. The data mining seeks to generate information similar to the one that a human expert might produce. In addition it is the process of discovering interesting knowledge, as patterns, associations, changes, abnormalities and significant structures from big quantities of information stored in databases, data warehouses or any other way of storage of information. The machine learning is a branch of the artificial Intelligence which aim is to develop technologies that they allow the computers to learn. More specifically, it is a question of creating programs capable of generalizing behaviors from not structured information supplied in the form of examples. The data mining uses methods of machine learning to discover and to enumerate present patterns in the information. In the last years there have been applied classification and machine learning techniques in a high number of areas such as healthcare, commercial or security. A very current example is the detection of behaviors and fraudulent transactions in banks. An application of interest is the use of the techniques developed for the detection of fraudulent behaviors in the identification of existing Users inside intelligent environments without need to realize a process of authentication. To verify these techniques are effective during the phase of analysis of a certain solution, it is necessary to create a platform that support the development, validation and evaluation of algorithms of learning and classification in the environments of application under study. The project proposed is defined for the creation of a platform that allows evaluating algorithms of machine learning as mechanisms of identification in intelligent spaces. There will be studied both the own algorithms of this type of technologies and the current existing platforms to define a set of specific requirements of the platform to develop. After the analysis the platform will develop partially. After the development it will be validated by prove of concept and finally verified in an environment of investigation that would be define.
Resumo:
El presente PFC tiene como objetivo el desarrollo de un gestor domótico basado en el dictado de voz de la red social WhatsApp. Dicho gestor no solo sustituirá el concepto dañino de que la integración de la domótica hoy en día es cara e inservible sino que acercará a aquellas personas con una discapacidad a tener una mejora en la calidad de vida. Estas personas, con un simple comando de voz a su aplicación WhatsApp de su terminal móvil, podrán activar o desactivar todos los elementos domóticos que su vivienda tenga instalados, “activar lámpara”, “encender Horno”, “abrir Puerta”… Todo a un muy bajo precio y utilizando tecnologías OpenSource El objetivo principal de este PFC es ayudar a la gente con una discapacidad a tener mejor calidad de vida, haciéndose independiente en las labores del hogar, ya que será el hogar quien haga las labores. La accesibilidad de este servicio, es por tanto, la mayor de las metas. Para conseguir accesibilidad para todas las personas, se necesita un servicio barato y de fácil aprendizaje. Se elige la red social WhatsApp como interprete, ya que no necesita de formación al ser una aplicación usada mayoritariamente en España y por la capacidad del dictado de voz, y se eligen las tecnologías OpenSource por ser la gran mayoría de ellas gratuitas o de pago solo el hardware. La utilización de la Red social WhatsApp se justifica por sí sola, en septiembre de 2015 se registraron 900 millones de usuarios. Este dato es fruto, también, de la reciente adquisición por parte de Facebook y hace que cumpla el primer requisito de accesibilidad para el servicio domotico que se presenta. Desde hace casi 5 años existe una API liberada de WhatsApp, que la comunidad OpenSource ha utilizado, para crear sus propios clientes o aplicaciones de envío de mensajes, usando la infraestructura de la red social. La empresa no lo aprueba abiertamente, pero la liberación de la API fue legal y su uso también lo es. Por otra parte la empresa se reserva el derecho de bloquear cuentas por el uso fraudulento de su infraestructura. Las tecnologías OpenSource utilizadas han sido, distribuciones Linux (Raspbian) y lenguajes de programación PHP, Python y BASHSCRIPT, todo cubierto por la comunidad, ofreciendo soporte y escalabilidad. Es por ello que se utiliza, como matriz y gestor domotico central, una RaspberryPI. Los servicios que el gestor ofrece en su primera versión incluyen el control domotico de la iluminación eléctrica general o personal, el control de todo tipo de electrodomésticos, el control de accesos para la puerta principal de entrada y el control de medios audiovisuales. ABSTRACT. This final thesis aims to develop a domotic manager based on the speech recognition capacity implemented in the social network, WhatsApp. This Manager not only banish the wrong idea about how expensive and useless is a domotic installation, this manager will give an opportunity to handicapped people to improve their quality of life. These people, with a simple voice command to their own WhatsApp, could enable or disable all the domotics devices installed in their living places. “On Lamp”, “ON Oven”, “Open Door”… This service reduce considerably the budgets because the use of OpenSource Technologies. The main achievement of this thesis is help handicapped people improving their quality of life, making independent from the housework. The house will do the work. The accessibility is, by the way, the goal to achieve. To get accessibility to a width range, we need a cheap, easy to learn and easy to use service. The social Network WhatsApp is one part of the answer, this app does not need explanation because is used all over the world, moreover, integrates the speech recognition capacity. The OpenSource technologies is the other part of the answer due to the low costs or, even, the free costs of their implementations. The use of the social network WhatsApp is explained by itself. In September 2015 were registered around 900 million users, of course, the recent acquisition by Facebook has helped in this astronomic number and match the first law of this service about the accessibility. Since five years exists, in the internet, a free WhatsApp API. The OpenSource community has used this API to develop their own messaging apps or desktop-clients, using the WhatsApp infrastructure. The company does not approve officially, however le API freedom is legal and the use of the API is legal too. On the other hand, the company can block accounts who makes a fraudulent use of his infrastructure. OpenSource technologies used in this thesis are: Linux distributions (Raspbian) and programming languages PHP, Python and BASHCSRIPT, all of these technologies are covered by the community offering support and scalability. Due to that, it is used a RaspberryPI as the Central Domotic Manager. The domotic services that currently this manager achieve are: Domotic lighting control, electronic devices control, access control to the main door and Media Control.