2 resultados para Frame theory

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The construction of a Gothic vault implied the solution of several technical challenges. The literature on Gothic vault construction is quite large and its growth continues steadily. The main challenge of any structure is that, during and after construction, it must be "safe", that is, it must not collapse. Indeed, it must be amply safe, able to support different loads for long periods of time. Masonry architecture has shown its structural safety for centuries or millennia. The Pantheon of Rome stands today after almost 2,000 years without having needed any structural reinforcement (of course, the survival of any building implies continuous maintenance) . Hagia Sophia in Istanbul, finished in the 6th century AD, has withstood not only the dead loads but also many severe earthquakes . Finally, the Gothic cathedrals, with their appearance of weakness, are• more than a half millennium old. The question arises of what the source of this amazing strength is and how the illiterate master masons were able to design such daring and safe structures . This question is usually evaded in manuals of Gothic architecture. This is quite surprising, the structure being a fundamental part of Gothic buildings. The present article aims to give such an explanation, which has been studied in detail elsewhere. In the first part, the Gothic design methods "V ill be discussed. In the second part, the validity of these methods wi11 be verified within the frame of the modern theory of masonry structures . References have been reduced to a minimum to make the text simpler and more direct.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this paper is to design a path following control system for a car-like mobile robot using classical linear control techniques, so that it adapts on-line to varying conditions during the trajectory following task. The main advantages of the proposed control structure is that well known linear control theory can be applied in calculating the PID controllers to full control requirements, while at the same time it is exible to be applied in non-linear changing conditions of the path following task. For this purpose the Frenet frame kinematic model of the robot is linearised at a varying working point that is calculated as a function of the actual velocity, the path curvature and kinematic parameters of the robot, yielding a transfer function that varies during the trajectory. The proposed controller is formed by a combination of an adaptive PID and a feed-forward controller, which varies accordingly with the working conditions and compensates the non-linearity of the system. The good features and exibility of the proposed control structure have been demonstrated through realistic simulations that include both kinematics and dynamics of the car-like robot.