6 resultados para Forward error correcting code
em Universidad Politécnica de Madrid
Resumo:
Desde que las Tecnologías de la Información y la Comunicación comenzaron a adquirir una gran importancia en la sociedad, uno de los principales objetivos ha sido conseguir que la información transmitida llegue en perfectas condiciones al receptor. Por este motivo, se hace necesario el desarrollo de nuevos sistemas de comunicación digital capaces de ofrecer una transmisión segura y fiable. Con el paso de los años, se han ido mejorando las características de los mismos, lo que significa importantes avances en la vida cotidiana. En este contexto, uno de los sistemas que más éxito ha tenido es la Modulación Reticulada con Codificación TCM, que aporta grandes ventajas en la comunicación digital, especialmente en los sistemas de banda estrecha. Este tipo de código de protección contra errores, basado en la codificación convolucional, se caracteriza por realizar la modulación y codificación en una sola función. Como consecuencia, se obtiene una mayor velocidad de transmisión de datos sin necesidad de incrementar el ancho de banda, a costa de pasar a una constelación superior. Con este Proyecto Fin de Grado se quiere analizar el comportamiento de la modulación TCM y cuáles son las ventajas que ofrece frente a otros sistemas similares. Se propone realizar cuatro simulaciones, que permitan visualizar diversas gráficas en las que se relacione la probabilidad de bit erróneo BER y la relación señal a ruido SNR. Además, con estas gráficas se puede determinar la ganancia que se obtiene con respecto a la probabilidad de bit erróneo teórica. Estos sistemas pasan de una modulación QPSK a una 8PSK o de una 8PSK a una 16QAM. Finalmente, se desarrolla un entorno gráfico de Matlab con el fin de proporcionar un sencillo manejo al usuario y una mayor interactividad. ABSTRACT. Since Information and Communication Technologies began to gain importance on society, one of the main objectives has been to achieve the transmitted information reaches the receiver perfectly. For this reason, it is necessary to develop new digital communication systems with the ability to offer a secure and reliable transmission. The systems characteristics have improved over the past years, what it means important progress in everyday life. In this context, one of the most successful systems is Trellis Coded Modulation TCM, that brings great advantages in terms of digital communications, especially narrowband systems. This kind of error correcting code, based on convolutional coding, is characterized by codifying and modulating at the same time. As a result, a higher data transmission speed is achieved without increasing bandwidth at the expense of using a superior modulation. The aim of this project is to analyze the TCM performance and the advantages it offers in comparison with other similar systems. Four simulations are proposed, that allows to display several graphics that show how the Bit Error Ratio BER and Signal Noise Ratio SNR are related. Furthermore, it is possible to calculate the coding gain. Finally, a Matlab graphic environment is designed in order to guarantee the interactivity with the final user.
Resumo:
This paper presents an alternative Forward Error Correction scheme, based on Reed-Solomon codes, with the aim of protecting the transmission of RTP-multimedia streams: the inter-packet symbol approach. This scheme is based on an alternative bit structure that allocates each symbol of the Reed-Solomon code in several RTP-media packets. This characteristic permits to exploit better the recovery capability of Reed-Solomon codes against bursty packet losses. The performance of our approach has been studied in terms of encoding/decoding time versus recovery capability, and compared with other proposed schemes in the literature. The theoretical analysis has shown that our approach allows the use of a lower size of the Galois Fields compared to other solutions. This lower size results in a decrease of the required encoding/decoding time while keeping a comparable recovery capability. Finally, experimental results have been carried out to assess the performance of our approach compared to other schemes in a simulated environment, where models for wireless and wireline channels have been considered.
Resumo:
We present an adaptive unequal error protection (UEP) strategy built on the 1-D interleaved parity Application Layer Forward Error Correction (AL-FEC) code for protecting the transmission of stereoscopic 3D video content encoded with Multiview Video Coding (MVC) through IP-based networks. Our scheme targets the minimization of quality degradation produced by packet losses during video transmission in time-sensitive application scenarios. To that end, based on a novel packet-level distortion model, it selects in real time the most suitable packets within each Group of Pictures (GOP) to be protected and the most convenient FEC technique parameters, i.e., the size of the FEC generator matrix. In order to make these decisions, it considers the relevance of the packet, the behavior of the channel, and the available bitrate for protection purposes. Simulation results validate both the distortion model introduced to estimate the importance of packets and the optimization of the FEC technique parameter values.
Resumo:
A video-aware unequal loss protection (ULP) system for protecting RTP video streaming in bursty packet loss networks is proposed. Just considering the relevance of the frame, the state of the channel and the bitrate constraints of the protection bitstream, our algorithm selects in real time the most suitable frames to be protected through forward error correction (FEC) techniques. It benefits from a wise RTP encapsulation that allows working at a frame level without requiring any further process than that of parsing RTP headers, so it is perfectly suitable to be included in commercial transmitters. The simulation results show how our proposed ULP technique outperforms non-smart schemes.
Resumo:
The assessment of the accuracy of parameters related to the reactor core performance (e.g., ke) and f el cycle (e.g., isotopic evolution/transmutation) due to the uncertainties in the basic nuclear data (ND) is a critical issue. Different error propagation techniques (adjoint/forward sensitivity analysis procedures and/or Monte Carlo technique) can be used to address by computational simulation the systematic propagation of uncertainties on the final parameters. To perform this uncertainty assessment, the ENDF covariance les (variance/correlation in energy and cross- reactions-isotopes correlations) are required. In this paper, we assess the impact of ND uncertainties on the isotopic prediction for a conceptual design of a modular European Facility for Industrial Transmutation (EFIT) for a discharge burnup of 150 GWd/tHM. The complete set of uncertainty data for cross sections (EAF2007/UN, SCALE6.0/COVA-44G), radioactive decay and fission yield data (JEFF-3.1.1) are processed and used in ACAB code.
Resumo:
Software Product Line Engineering has significant advantages in family-based software development. The common and variable structure for all products of a family is defined through a Product-Line Architecture (PLA) that consists of a common set of reusable components and connectors which can be configured to build the different products. The design of PLA requires solutions for capturing such configuration (variability). The Flexible-PLA Model is a solution that supports the specification of external variability of the PLA configuration, as well as internal variability of components. However, a complete support for product-line development requires translating architecture specifications into code. This complex task needs automation to avoid human error. Since Model-Driven Development allows automatic code generation from models, this paper presents a solution to automatically generate AspectJ code from Flexible-PLA models previously configured to derive specific products. This solution is supported by a modeling framework and validated in a software factory.