8 resultados para Fort Monroe Test Facility (Va.)
em Universidad Politécnica de Madrid
Resumo:
This work is based on the prototype High Engineering Test Reactor (HTTR) of the Japan Agency of Energy Atomic (JAEA). Its objective is to describe an adequate deterministic model to be used in the assessment of its design safety margins via damage domains. The concept of damage domain is defined and it is shown its relevance in the ongoing effort to apply dynamic risk assessment methods and tools based on the Theory of Stimulated Dynamics (TSD). To illustrate, we present results of an abnormal control rod (CR) withdrawal during subcritical condition and its comparison with results obtained by JAEA. No attempt is made yet to actually assess the detailed scenarios, rather to show how the approach may handle events of its kind
Resumo:
Since the Three Mile Island accident, an important focus of pressurized water reactor (PWR) transient analyses has been a small-break loss-of-coolant accident (SBLOCA). In 2002, the discovery of thinning of the vessel head wall at the Davis Besse nuclear power plant reactor indicated the possibility of an SBLOCA in the upper head of the reactor vessel as a result of circumferential cracking of a control rod drive mechanism penetration nozzle - which has cast even greater importance on the study of SBLOCAs. Several experimental tests have been performed at the Large Scale Test Facility to simulate the behavior of a PWR during an upper-head SBLOCA. The last of these tests, Organisation for Economic Co-operation and Development Nuclear Energy Agency Rig of Safety Assessment (OECD/NEA ROSA) Test 6.1, was performed in 2005. This test was simulated with the TRACE 5.0 code, and good agreement with the experimental results was obtained. Additionally, a broad analysis of an upper-head SBLOCA with high-pressure safety injection failed in a Westinghouse PWR was performed taking into account different accident management actions and conditions in order to check their suitability. This issue has been analyzed also in the framework of the OECD/NEA ROSA project and the Code Applications and Maintenance Program (CAMP). The main conclusion is that the current emergency operating procedures for Westinghouse reactor design are adequate for these kinds of sequences, and they do not need to be modified.
Resumo:
The stabilizing effect of grouping rotor blades in pairs has been assessed both, numerically and experimentally. The bending and torsion modes of a low aspect ratio high speed turbine cascade tested in the non-rotating test facility at EPFL (Ecole Polytechnique Fédérale de Lausanne) have been chosen as the case study. The controlled vibration of 20 blades in travelling wave form was performed by means of an electromagnetic excitation system, enabling the adjustement of the vibration amplitude and inter blade phase at a given frequency. Unsteady pressure transducers located along the blade mid-section were used to obtain the modulus and phase of the unsteady pressure caused by the airfoil motion. The stabilizing effect of the torsion mode was clearly observed both in the experiments and the simulations, however the effect of grouping the blades in pairs in the minimum damping at the tested frequency was marginal in the bending mode. A numerical tool was validated using the available experimental data and then used to extend the results at lower and more relevant reduced frequencies. It is shown that the stabilizing effect exists for the bending and torsion modes in the frequency range typical of low-pressure turbines. It is concluded that the stabilizing effect of this configuration is due to the shielding effect of the pressure side of the airfoil that defines the passage of the pair on the suction side of the same passage, since the relative motion between both is null. This effect is observed both in the experiments and simulations.
Resumo:
Hoy en día, el proceso de un proyecto sostenible persigue realizar edificios de elevadas prestaciones que son, energéticamente eficientes, saludables y económicamente viables utilizando sabiamente recursos renovables para minimizar el impacto sobre el medio ambiente reduciendo, en lo posible, la demanda de energía, lo que se ha convertido, en la última década, en una prioridad. La Directiva 2002/91/CE "Eficiencia Energética de los Edificios" (y actualizaciones posteriores) ha establecido el marco regulatorio general para el cálculo de los requerimientos energéticos mínimos. Desde esa fecha, el objetivo de cumplir con las nuevas directivas y protocolos ha conducido las políticas energéticas de los distintos países en la misma dirección, centrándose en la necesidad de aumentar la eficiencia energética en los edificios, la adopción de medidas para reducir el consumo, y el fomento de la generación de energía a través de fuentes renovables. Los edificios de energía nula o casi nula (ZEB, Zero Energy Buildings ó NZEB, Net Zero Energy Buildings) deberán convertirse en un estándar de la construcción en Europa y con el fin de equilibrar el consumo de energía, además de reducirlo al mínimo, los edificios necesariamente deberán ser autoproductores de energía. Por esta razón, la envolvente del edifico y en particular las fachadas son importantes para el logro de estos objetivos y la tecnología fotovoltaica puede tener un papel preponderante en este reto. Para promover el uso de la tecnología fotovoltaica, diferentes programas de investigación internacionales fomentan y apoyan soluciones para favorecer la integración completa de éstos sistemas como elementos arquitectónicos y constructivos, los sistemas BIPV (Building Integrated Photovoltaic), sobre todo considerando el próximo futuro hacia edificios NZEB. Se ha constatado en este estudio que todavía hay una falta de información útil disponible sobre los sistemas BIPV, a pesar de que el mercado ofrece una interesante gama de soluciones, en algunos aspectos comparables a los sistemas tradicionales de construcción. Pero por el momento, la falta estandarización y de una regulación armonizada, además de la falta de información en las hojas de datos técnicos (todavía no comparables con las mismas que están disponibles para los materiales de construcción), hacen difícil evaluar adecuadamente la conveniencia y factibilidad de utilizar los componentes BIPV como parte integrante de la envolvente del edificio. Organizaciones internacionales están trabajando para establecer las normas adecuadas y procedimientos de prueba y ensayo para comprobar la seguridad, viabilidad y fiabilidad estos sistemas. Sin embargo, hoy en día, no hay reglas específicas para la evaluación y caracterización completa de un componente fotovoltaico de integración arquitectónica de acuerdo con el Reglamento Europeo de Productos de la Construcción, CPR 305/2011. Los productos BIPV, como elementos de construcción, deben cumplir con diferentes aspectos prácticos como resistencia mecánica y la estabilidad; integridad estructural; seguridad de utilización; protección contra el clima (lluvia, nieve, viento, granizo), el fuego y el ruido, aspectos que se han convertido en requisitos esenciales, en la perspectiva de obtener productos ambientalmente sostenibles, saludables, eficientes energéticamente y económicamente asequibles. Por lo tanto, el módulo / sistema BIPV se convierte en una parte multifuncional del edificio no sólo para ser física y técnicamente "integrado", además de ser una oportunidad innovadora del diseño. Las normas IEC, de uso común en Europa para certificar módulos fotovoltaicos -IEC 61215 e IEC 61646 cualificación de diseño y homologación del tipo para módulos fotovoltaicos de uso terrestre, respectivamente para módulos fotovoltaicos de silicio cristalino y de lámina delgada- atestan únicamente la potencia del módulo fotovoltaico y dan fe de su fiabilidad por un período de tiempo definido, certificando una disminución de potencia dentro de unos límites. Existe también un estándar, en parte en desarrollo, el IEC 61853 (“Ensayos de rendimiento de módulos fotovoltaicos y evaluación energética") cuyo objetivo es la búsqueda de procedimientos y metodologías de prueba apropiados para calcular el rendimiento energético de los módulos fotovoltaicos en diferentes condiciones climáticas. Sin embargo, no existen ensayos normalizados en las condiciones específicas de la instalación (p. ej. sistemas BIPV de fachada). Eso significa que es imposible conocer las efectivas prestaciones de estos sistemas y las condiciones ambientales que se generan en el interior del edificio. La potencia nominal de pico Wp, de un módulo fotovoltaico identifica la máxima potencia eléctrica que éste puede generar bajo condiciones estándares de medida (STC: irradición 1000 W/m2, 25 °C de temperatura del módulo y distribución espectral, AM 1,5) caracterizando eléctricamente el módulo PV en condiciones específicas con el fin de poder comparar los diferentes módulos y tecnologías. El vatio pico (Wp por su abreviatura en inglés) es la medida de la potencia nominal del módulo PV y no es suficiente para evaluar el comportamiento y producción del panel en términos de vatios hora en las diferentes condiciones de operación, y tampoco permite predecir con convicción la eficiencia y el comportamiento energético de un determinado módulo en condiciones ambientales y de instalación reales. Un adecuado elemento de integración arquitectónica de fachada, por ejemplo, debería tener en cuenta propiedades térmicas y de aislamiento, factores como la transparencia para permitir ganancias solares o un buen control solar si es necesario, aspectos vinculados y dependientes en gran medida de las condiciones climáticas y del nivel de confort requerido en el edificio, lo que implica una necesidad de adaptación a cada contexto específico para obtener el mejor resultado. Sin embargo, la influencia en condiciones reales de operación de las diferentes soluciones fotovoltaicas de integración, en el consumo de energía del edificio no es fácil de evaluar. Los aspectos térmicos del interior del ambiente o de iluminación, al utilizar módulos BIPV semitransparentes por ejemplo, son aún desconocidos. Como se dijo antes, la utilización de componentes de integración arquitectónica fotovoltaicos y el uso de energía renovable ya es un hecho para producir energía limpia, pero también sería importante conocer su posible contribución para mejorar el confort y la salud de los ocupantes del edificio. Aspectos como el confort, la protección o transmisión de luz natural, el aislamiento térmico, el consumo energético o la generación de energía son aspectos que suelen considerarse independientemente, mientras que todos juntos contribuyen, sin embargo, al balance energético global del edificio. Además, la necesidad de dar prioridad a una orientación determinada del edificio, para alcanzar el mayor beneficio de la producción de energía eléctrica o térmica, en el caso de sistemas activos y pasivos, respectivamente, podría hacer estos últimos incompatibles, pero no necesariamente. Se necesita un enfoque holístico que permita arquitectos e ingenieros implementar sistemas tecnológicos que trabajen en sinergia. Se ha planteado por ello un nuevo concepto: "C-BIPV, elemento fotovoltaico consciente integrado", esto significa necesariamente conocer los efectos positivos o negativos (en términos de confort y de energía) en condiciones reales de funcionamiento e instalación. Propósito de la tesis, método y resultados Los sistemas fotovoltaicos integrados en fachada son a menudo soluciones de vidrio fácilmente integrables, ya que por lo general están hechos a medida. Estos componentes BIPV semitransparentes, integrados en el cerramiento proporcionan iluminación natural y también sombra, lo que evita el sobrecalentamiento en los momentos de excesivo calor, aunque como componente estático, asimismo evitan las posibles contribuciones pasivas de ganancias solares en los meses fríos. Además, la temperatura del módulo varía considerablemente en ciertas circunstancias influenciada por la tecnología fotovoltaica instalada, la radiación solar, el sistema de montaje, la tipología de instalación, falta de ventilación, etc. Este factor, puede suponer un aumento adicional de la carga térmica en el edificio, altamente variable y difícil de cuantificar. Se necesitan, en relación con esto, más conocimientos sobre el confort ambiental interior en los edificios que utilizan tecnologías fotovoltaicas integradas, para abrir de ese modo, una nueva perspectiva de la investigación. Con este fin, se ha diseñado, proyectado y construido una instalación de pruebas al aire libre, el BIPV Env-lab "BIPV Test Laboratory", para la caracterización integral de los diferentes módulos semitransparentes BIPV. Se han definido también el método y el protocolo de ensayos de caracterización en el contexto de un edificio y en condiciones climáticas y de funcionamiento reales. Esto ha sido posible una vez evaluado el estado de la técnica y la investigación, los aspectos que influyen en la integración arquitectónica y los diferentes tipos de integración, después de haber examinado los métodos de ensayo para los componentes de construcción y fotovoltaicos, en condiciones de operación utilizadas hasta ahora. El laboratorio de pruebas experimentales, que consiste en dos habitaciones idénticas a escala real, 1:1, ha sido equipado con sensores y todos los sistemas de monitorización gracias a los cuales es posible obtener datos fiables para evaluar las prestaciones térmicas, de iluminación y el rendimiento eléctrico de los módulos fotovoltaicos. Este laboratorio permite el estudio de tres diferentes aspectos que influencian el confort y consumo de energía del edificio: el confort térmico, lumínico, y el rendimiento energético global (demanda/producción de energía) de los módulos BIPV. Conociendo el balance de energía para cada tecnología solar fotovoltaica experimentada, es posible determinar cuál funciona mejor en cada caso específico. Se ha propuesto una metodología teórica para la evaluación de estos parámetros, definidos en esta tesis como índices o indicadores que consideran cuestiones relacionados con el bienestar, la energía y el rendimiento energético global de los componentes BIPV. Esta metodología considera y tiene en cuenta las normas reglamentarias y estándares existentes para cada aspecto, relacionándolos entre sí. Diferentes módulos BIPV de doble vidrio aislante, semitransparentes, representativos de diferentes tecnologías fotovoltaicas (tecnología de silicio monocristalino, m-Si; de capa fina en silicio amorfo unión simple, a-Si y de capa fina en diseleniuro de cobre e indio, CIS) fueron seleccionados para llevar a cabo una serie de pruebas experimentales al objeto de demostrar la validez del método de caracterización propuesto. Como resultado final, se ha desarrollado y generado el Diagrama Caracterización Integral DCI, un sistema gráfico y visual para representar los resultados y gestionar la información, una herramienta operativa útil para la toma de decisiones con respecto a las instalaciones fotovoltaicas. Este diagrama muestra todos los conceptos y parámetros estudiados en relación con los demás y ofrece visualmente toda la información cualitativa y cuantitativa sobre la eficiencia energética de los componentes BIPV, por caracterizarlos de manera integral. ABSTRACT A sustainable design process today is intended to produce high-performance buildings that are energy-efficient, healthy and economically feasible, by wisely using renewable resources to minimize the impact on the environment and to reduce, as much as possible, the energy demand. In the last decade, the reduction of energy needs in buildings has become a top priority. The Directive 2002/91/EC “Energy Performance of Buildings” (and its subsequent updates) established a general regulatory framework’s methodology for calculation of minimum energy requirements. Since then, the aim of fulfilling new directives and protocols has led the energy policies in several countries in a similar direction that is, focusing on the need of increasing energy efficiency in buildings, taking measures to reduce energy consumption, and fostering the use of renewable sources. Zero Energy Buildings or Net Zero Energy Buildings will become a standard in the European building industry and in order to balance energy consumption, buildings, in addition to reduce the end-use consumption should necessarily become selfenergy producers. For this reason, the façade system plays an important role for achieving these energy and environmental goals and Photovoltaic can play a leading role in this challenge. To promote the use of photovoltaic technology in buildings, international research programs encourage and support solutions, which favors the complete integration of photovoltaic devices as an architectural element, the so-called BIPV (Building Integrated Photovoltaic), furthermore facing to next future towards net-zero energy buildings. Therefore, the BIPV module/system becomes a multifunctional building layer, not only physically and functionally “integrated” in the building, but also used as an innovative chance for the building envelope design. It has been found in this study that there is still a lack of useful information about BIPV for architects and designers even though the market is providing more and more interesting solutions, sometimes comparable to the existing traditional building systems. However at the moment, the lack of an harmonized regulation and standardization besides to the non-accuracy in the technical BIPV datasheets (not yet comparable with the same ones available for building materials), makes difficult for a designer to properly evaluate the fesibility of this BIPV components when used as a technological system of the building skin. International organizations are working to establish the most suitable standards and test procedures to check the safety, feasibility and reliability of BIPV systems. Anyway, nowadays, there are no specific rules for a complete characterization and evaluation of a BIPV component according to the European Construction Product Regulation, CPR 305/2011. BIPV products, as building components, must comply with different practical aspects such as mechanical resistance and stability; structural integrity; safety in use; protection against weather (rain, snow, wind, hail); fire and noise: aspects that have become essential requirements in the perspective of more and more environmentally sustainable, healthy, energy efficient and economically affordable products. IEC standards, commonly used in Europe to certify PV modules (IEC 61215 and IEC 61646 respectively crystalline and thin-film ‘Terrestrial PV Modules-Design Qualification and Type Approval’), attest the feasibility and reliability of PV modules for a defined period of time with a limited power decrease. There is also a standard (IEC 61853, ‘Performance Testing and Energy Rating of Terrestrial PV Modules’) still under preparation, whose aim is finding appropriate test procedures and methodologies to calculate the energy yield of PV modules under different climate conditions. Furthermore, the lack of tests in specific conditions of installation (e.g. façade BIPV devices) means that it is difficult knowing the exact effective performance of these systems and the environmental conditions in which the building will operate. The nominal PV power at Standard Test Conditions, STC (1.000 W/m2, 25 °C temperature and AM 1.5) is usually measured in indoor laboratories, and it characterizes the PV module at specific conditions in order to be able to compare different modules and technologies on a first step. The “Watt-peak” is not enough to evaluate the panel performance in terms of Watt-hours of various modules under different operating conditions, and it gives no assurance of being able to predict the energy performance of a certain module at given environmental conditions. A proper BIPV element for façade should take into account thermal and insulation properties, factors as transparency to allow solar gains if possible or a good solar control if necessary, aspects that are linked and high dependent on climate conditions and on the level of comfort to be reached. However, the influence of different façade integrated photovoltaic solutions on the building energy consumption is not easy to assess under real operating conditions. Thermal aspects, indoor temperatures or luminance level that can be expected using building integrated PV (BIPV) modules are not well known. As said before, integrated photovoltaic BIPV components and the use of renewable energy is already a standard for green energy production, but would also be important to know the possible contribution to improve the comfort and health of building occupants. Comfort, light transmission or protection, thermal insulation or thermal/electricity power production are aspects that are usually considered alone, while all together contribute to the building global energy balance. Besides, the need to prioritize a particular building envelope orientation to harvest the most benefit from the electrical or thermal energy production, in the case of active and passive systems respectively might be not compatible, but also not necessary. A holistic approach is needed to enable architects and engineers implementing technological systems working in synergy. A new concept have been suggested: “C-BIPV, conscious integrated BIPV”. BIPV systems have to be “consciously integrated” which means that it is essential to know the positive and negative effects in terms of comfort and energy under real operating conditions. Purpose of the work, method and results The façade-integrated photovoltaic systems are often glass solutions easily integrable, as they usually are custommade. These BIPV semi-transparent components integrated as a window element provides natural lighting and shade that prevents overheating at times of excessive heat, but as static component, likewise avoid the possible solar gains contributions in the cold months. In addition, the temperature of the module varies considerably in certain circumstances influenced by the PV technology installed, solar radiation, mounting system, lack of ventilation, etc. This factor may result in additional heat input in the building highly variable and difficult to quantify. In addition, further insights into the indoor environmental comfort in buildings using integrated photovoltaic technologies are needed to open up thereby, a new research perspective. This research aims to study their behaviour through a series of experiments in order to define the real influence on comfort aspects and on global energy building consumption, as well as, electrical and thermal characteristics of these devices. The final objective was to analyze a whole set of issues that influence the global energy consumption/production in a building using BIPV modules by quantifying the global energy balance and the BIPV system real performances. Other qualitative issues to be studied were comfort aspect (thermal and lighting aspects) and the electrical behaviour of different BIPV technologies for vertical integration, aspects that influence both energy consumption and electricity production. Thus, it will be possible to obtain a comprehensive global characterization of BIPV systems. A specific design of an outdoor test facility, the BIPV Env-lab “BIPV Test Laboratory”, for the integral characterization of different BIPV semi-transparent modules was developed and built. The method and test protocol for the BIPV characterization was also defined in a real building context and weather conditions. This has been possible once assessed the state of the art and research, the aspects that influence the architectural integration and the different possibilities and types of integration for PV and after having examined the test methods for building and photovoltaic components, under operation conditions heretofore used. The test laboratory that consists in two equivalent test rooms (1:1) has a monitoring system in which reliable data of thermal, daylighting and electrical performances can be obtained for the evaluation of PV modules. The experimental set-up facility (testing room) allows studying three different aspects that affect building energy consumption and comfort issues: the thermal indoor comfort, the lighting comfort and the energy performance of BIPV modules tested under real environmental conditions. Knowing the energy balance for each experimented solar technology, it is possible to determine which one performs best. A theoretical methodology has been proposed for evaluating these parameters, as defined in this thesis as indices or indicators, which regard comfort issues, energy and the overall performance of BIPV components. This methodology considers the existing regulatory standards for each aspect, relating them to one another. A set of insulated glass BIPV modules see-through and light-through, representative of different PV technologies (mono-crystalline silicon technology, mc-Si, amorphous silicon thin film single junction, a-Si and copper indium selenide thin film technology CIS) were selected for a series of experimental tests in order to demonstrate the validity of the proposed characterization method. As result, it has been developed and generated the ICD Integral Characterization Diagram, a graphic and visual system to represent the results and manage information, a useful operational tool for decision-making regarding to photovoltaic installations. This diagram shows all concepts and parameters studied in relation to each other and visually provides access to all the results obtained during the experimental phase to make available all the qualitative and quantitative information on the energy performance of the BIPV components by characterizing them in a comprehensive way.
Resumo:
This Doctoral Thesis entitled Contribution to the analysis, design and assessment of compact antenna test ranges at millimeter wavelengths aims to deepen the knowledge of a particular antenna measurement system: the compact range, operating in the frequency bands of millimeter wavelengths. The thesis has been developed at Radiation Group (GR), an antenna laboratory which belongs to the Signals, Systems and Radiocommunications department (SSR), from Technical University of Madrid (UPM). The Radiation Group owns an extensive experience on antenna measurements, running at present four facilities which operate in different configurations: Gregorian compact antenna test range, spherical near field, planar near field and semianechoic arch system. The research work performed in line with this thesis contributes the knowledge of the first measurement configuration at higher frequencies, beyond the microwaves region where Radiation Group features customer-level performance. To reach this high level purpose, a set of scientific tasks were sequentially carried out. Those are succinctly described in the subsequent paragraphs. A first step dealed with the State of Art review. The study of scientific literature dealed with the analysis of measurement practices in compact antenna test ranges in addition with the particularities of millimeter wavelength technologies. Joint study of both fields of knowledge converged, when this measurement facilities are of interest, in a series of technological challenges which become serious bottlenecks at different stages: analysis, design and assessment. Thirdly after the overview study, focus was set on Electromagnetic analysis algorithms. These formulations allow to approach certain electromagnetic features of interest, such as field distribution phase or stray signal analysis of particular structures when they interact with electromagnetic waves sources. Properly operated, a CATR facility features electromagnetic waves collimation optics which are large, in terms of wavelengths. Accordingly, the electromagnetic analysis tasks introduce an extense number of mathematic unknowns which grow with frequency, following different polynomic order laws depending on the used algorithmia. In particular, the optics configuration which was of our interest consisted on the reflection type serrated edge collimator. The analysis of these devices requires a flexible handling of almost arbitrary scattering geometries, becoming this flexibility the nucleus of the algorithmia’s ability to perform the subsequent design tasks. This thesis’ contribution to this field of knowledge consisted on reaching a formulation which was powerful at the same time when dealing with various analysis geometries and computationally speaking. Two algorithmia were developed. While based on the same principle of hybridization, they reached different order Physics performance at the cost of the computational efficiency. Inter-comparison of their CATR design capabilities was performed, reaching both qualitative as well as quantitative conclusions on their scope. In third place, interest was shifted from analysis - design tasks towards range assessment. Millimetre wavelengths imply strict mechanical tolerances and fine setup adjustment. In addition, the large number of unknowns issue already faced in the analysis stage appears as well in the on chamber field probing stage. Natural decrease of dynamic range available by semiconductor millimeter waves sources requires in addition larger integration times at each probing point. These peculiarities increase exponentially the difficulty of performing assessment processes in CATR facilities beyond microwaves. The bottleneck becomes so tight that it compromises the range characterization beyond a certain limit frequency which typically lies on the lowest segment of millimeter wavelength frequencies. However the value of range assessment moves, on the contrary, towards the highest segment. This thesis contributes this technological scenario developing quiet zone probing techniques which achieves substantial data reduction ratii. Collaterally, it increases the robustness of the results to noise, which is a virtual rise of the setup’s available dynamic range. In fourth place, the environmental sensitivity of millimeter wavelengths issue was approached. It is well known the drifts of electromagnetic experiments due to the dependance of the re sults with respect to the surrounding environment. This feature relegates many industrial practices of microwave frequencies to the experimental stage, at millimeter wavelengths. In particular, evolution of the atmosphere within acceptable conditioning bounds redounds in drift phenomena which completely mask the experimental results. The contribution of this thesis on this aspect consists on modeling electrically the indoor atmosphere existing in a CATR, as a function of environmental variables which affect the range’s performance. A simple model was developed, being able to handle high level phenomena, such as feed - probe phase drift as a function of low level magnitudes easy to be sampled: relative humidity and temperature. With this model, environmental compensation can be performed and chamber conditioning is automatically extended towards higher frequencies. Therefore, the purpose of this thesis is to go further into the knowledge of millimetre wavelengths involving compact antenna test ranges. This knowledge is dosified through the sequential stages of a CATR conception, form early low level electromagnetic analysis towards the assessment of an operative facility, stages for each one of which nowadays bottleneck phenomena exist and seriously compromise the antenna measurement practices at millimeter wavelengths.
Resumo:
El presente trabajo tiene por objetivo generar una metodología validada que permita predecir el consumo de vehículos turismo circulando en cualquier tramo de vía a partir del perfil orográfico y del diagrama velocidad-tiempo. Para la generación de la metodología, se ha realizado un modelo de simulación con el programa ADVISOR que permite calcular el consumo de combustible para un determinado recorrido en el que se tiene en cuenta el perfil orográfico. Este modelo fue validado con datos reales medidos con equipos on-board y se usó para calcular el consumo de combustible diferencial debido al efecto de la pendiente de la vía, al poderse simular con y sin pendiente. Se realizaron múltiples simulaciones de recorridos con velocidad máxima variable con el fin de obtener un número significativo de datos. Con los resultados de las diferentes simulaciones, se realizó un estudio estadístico, para determinar las variables influyentes y se generó una función estadística (Ecuación de Consumo Estimado – ECE) que permite calcular el consumo de combustible debido a la pendiente de la vía, conociendo el consumo del vehículo en carretera llana (sin pendiente). Esta función estadística generada (ECE), se validó con datos reales medidos en tráfico real. Con el fin de darle generalidad y aplicabilidad a la función generada, y teniendo en cuenta que el consumo de combustible en carretera llana no está siempre disponible, se ha calculado el consumo de combustible sin pendiente utilizando la metodología Copert 4, metodología oficial desarrollada por la Agencia de Medio Ambiente de Europa (EEA) para la estimación de emisiones y consumo de combustible que está basada en datos experimentales pero que no tiene en cuenta la pendiente de la vía. La Ecuación de Consumo Estimado (ECE) aplicada a los consumos calculados por la metodología Copert 4, se valida también usando datos reales medidos en tráfico real y se comprueba que esta función se ajusta considerablemente bien a la realidad, con un error en el consumo acumulado frente al del ensayo real de un 1% y una correlación con el consumo instantáneo del ensayo real de 0,93. Se concluye, que la Función de Consumo Estimado (ECE), permite predecir el efecto de la pendiente sobre el consumo de combustible de un vehículo turismo en tráfico real con un error menor del 1%. Abstract This projects aims to develop a validated methodology that enables to predict cars consumption while circulating at any kind of road section based on its orographic outline and the speed-time diagram. In order to develop this methodology, a simulation model has been performed with the programme ADVISOR, that allows fuel consumption calculation for an specific route in which the orographic outline is considered. This model was validated by real data measured with an on-board equipment and it was used to calculate the differential fuel consumption caused by the effect of the slope on the road, as it was possible to simulate with or without slope. Many simulations were run with routes with variable maximum speed, aiming to obtain a significant amount of data. An statistical study was carried out with the results of those simulations with the purpose to determine the influential variables and an statistical function ( Estimated Consumption Equation – ECE) that enables fuel consumption calculation due to the road’s slope when the consumption of a vehicle on horizontal road (without any slope) is known. This statistical function (ECE) was validated by real data measured in real traffic conditions. With the purpose to generalise the function and increase its applicability, considering that the consumption of a vehicle on horizontal road is not always available, the nonslope fuel consumption has been calculated through Copert 4 methodology, which is the official methodology developed by the European Environmental Agency (EEA) for emissions and fuel consumption calculation based on experimental data, but without taking into consideration the road’s slope. The Estimated Consumption Equation (ECE) applied to the consumption calculated through Copert 4 methodology is also validated using real data measured in real traffic conditions. It was verified that this function considerably adjusts to reality, with an error on the accumulated consumption compared to the real test of 1% and a correlation with the real test immediate fuel consumption of 0,93. It is concluded that the Estimated Consumption Equation (ECE) enables to predict the effect of the slope on the fuel consumption of a car in real traffic conditions with an error less than 1%.
Resumo:
The thermal design of stratospheric balloon payloads usually focuses on the cruise phase of the missions, that is, the floating altitude conditions. The ascent phase usually takes between 2 and 4 h, a very small period compared to the duration of the whole mission, which can last up to 4 weeks. However, during this phase payloads are subjected to very harsh conditions due mainly to the convective cooling that occurs as the balloon passes through the cold atmosphere, with minimum temperatures in the tropopause. The aim of this work is to study the thermal behaviour of a payload carried by a long duration balloon during the ascent phase. Its temperature has been calculated as a function of the altitude from sea level to floating conditions. To perform this analysis it has been assumed that the thermal interactions (convection and radiation) depend on the altitude, on the environmental conditions (which in turn depend also on the altitude) and on the temperature of the system itself. The results have been compared with the measurements taken during the SUNRISE test flight, launched in October 2007 by CSBF from Fort Sumner (New Mexico).
Resumo:
Se va a realizar un estudio de la codificación de imágenes sobre el estándar HEVC (high-effiency video coding). El proyecto se va a centrar en el codificador híbrido, más concretamente sobre la aplicación de la transformada inversa del coseno que se realiza tanto en codificador como en el descodificador. La necesidad de codificar vídeo surge por la aparición de la secuencia de imágenes como señales digitales. El problema principal que tiene el vídeo es la cantidad de bits que aparecen al realizar la codificación. Como consecuencia del aumento de la calidad de las imágenes, se produce un crecimiento exponencial de la cantidad de información a codificar. La utilización de las transformadas al procesamiento digital de imágenes ha aumentado a lo largo de los años. La transformada inversa del coseno se ha convertido en el método más utilizado en el campo de la codificación de imágenes y video. Las ventajas de la transformada inversa del coseno permiten obtener altos índices de compresión a muy bajo coste. La teoría de las transformadas ha mejorado el procesamiento de imágenes. En la codificación por transformada, una imagen se divide en bloques y se identifica cada imagen a un conjunto de coeficientes. Esta codificación se aprovecha de las dependencias estadísticas de las imágenes para reducir la cantidad de datos. El proyecto realiza un estudio de la evolución a lo largo de los años de los distintos estándares de codificación de video. Se analiza el codificador híbrido con más profundidad así como el estándar HEVC. El objetivo final que busca este proyecto fin de carrera es la realización del núcleo de un procesador específico para la ejecución de la transformada inversa del coseno en un descodificador de vídeo compatible con el estándar HEVC. Es objetivo se logra siguiendo una serie de etapas, en las que se va añadiendo requisitos. Este sistema permite al diseñador hardware ir adquiriendo una experiencia y un conocimiento más profundo de la arquitectura final. ABSTRACT. A study about the codification of images based on the standard HEVC (high-efficiency video coding) will be developed. The project will be based on the hybrid encoder, in particular, on the application of the inverse cosine transform, which is used for the encoder as well as for the decoder. The necessity of encoding video arises because of the appearance of the sequence of images as digital signals. The main problem that video faces is the amount of bits that appear when making the codification. As a consequence of the increase of the quality of the images, an exponential growth on the quantity of information that should be encoded happens. The usage of transforms to the digital processing of images has increased along the years. The inverse cosine transform has become the most used method in the field of codification of images and video. The advantages of the inverse cosine transform allow to obtain high levels of comprehension at a very low price. The theory of the transforms has improved the processing of images. In the codification by transform, an image is divided in blocks and each image is identified to a set of coefficients. This codification takes advantage of the statistic dependence of the images to reduce the amount of data. The project develops a study of the evolution along the years of the different standards in video codification. In addition, the hybrid encoder and the standard HEVC are analyzed more in depth. The final objective of this end of degree project is the realization of the nucleus from a specific processor for the execution of the inverse cosine transform in a decoder of video that is compatible with the standard HEVC. This objective is reached following a series of stages, in which requirements are added. This system allows the hardware designer to acquire a deeper experience and knowledge of the final architecture.