10 resultados para Flow distribution

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The efficiency of a Power Plant is affected by the distribution of the pulverized coal within the furnace. The coal, which is pulverized in the mills, is transported and distributed by the primary gas through the mill-ducts to the interior of the furnace. This is done with a double function: dry and enter the coal by different levels for optimizing the combustion in the sense that a complete combustion occurs with homogeneous heat fluxes to the walls. The mill-duct systems of a real Power Plant are very complex and they are not yet well understood. In particular, experimental data concerning the mass flows of coal to the different levels are very difficult to measure. CFD modeling can help to determine them. An Eulerian/Lagrangian approach is used due to the low solid–gas volume ratio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water development accompanying mankind development has turned rivers into endangered ecosystems. Improving the understanding of ecological responses to river management actions is a key issue for assuring sustainable water management. However, few studies have been published where ecological metrics have been quantified in response to various degrees of flow alteration. In this work, changes in natural distribution of trees and shrubs within the riparian corridor (as indicator of the ecological status of the fluvial ecosystem) were quantified at multiple sites along a flow alteration gradient (as indicator of impact) along two regulated river reaches, one Boreal and the other Mediterranean, each downstream of a dam. Based on the obtained relationships we evaluated differences in response trends related to local physico-climatic factors of the two biomes and regarding to differing life-forms. Woody vegetation establishment patterns represented objective indicators of ecological responses to flow alteration. We found different responses between life-forms. Both trees and shrubs migrated downwards to the channel after dam closure, but shrubs were most impacted under higher degrees of flow alteration in terms of lateral movement. In addition, our results show clear longitudinal recovery trends of natural patterns of tree and shrub distribution corresponding to a decrease in intensity of hydrologic alteration in the Boreal river. However, vegetation encroachment persisted along the entire Mediterranean study reach. This may result from a relatively low gradient of decrease of hydrologic alteration with distance from the dam, coupled with other overlapping pressures and the mediating effect of physico-climatic characteristics on vegetation responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through the use of the Distributed Fiber Optic Temperature Measurement (DFOT) method, it is possible to measure the temperature in small intervals (on the order of centimeters) for long distances (on the order of kilometers) with a high temporal frequency and great accuracy. The heat pulse method consists of applying a known amount of heat to the soil and monitoring the temperature evolution, which is primarily dependent on the soil moisture content. The use of both methods, which is called the active heat pulse method with fiber optic temperature sensing (AHFO), allows accurate soil moisture content measurements. In order to experimentally study the wetting patterns, i.e. shape, size, and the water distribution, from a drip irrigation emitter, a soil column of 0.5 m of diameter and 0.6 m high was built. Inside the column, a fiber optic cable with a stainless steel sheath was placed forming three concentric helixes of diameters 0.2 m, 0.4 m and 0.6 m, leading to a 148 measurement point network. Before, during, and after the irrigation event, heat pulses were performed supplying electrical power of 20 W/m to the steel. The soil moisture content was measured with a capacitive sensor in one location at depths of 0.1 m, 0.2 m, 0.3 m and 0.4 m during the irrigation. It was also determined by the gravimetric method in several locations and depths before and right after the irrigation. The emitter bulb dimensions and shape evolution was satisfactorily measured during infiltration. Furthermore, some bulb's characteristics difficult to predict (e.g. preferential flow) were detected. The results point out that the AHFO is a useful tool to estimate the wetting pattern of drip irrigation emitters in soil columns and show a high potential for its use in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In pressure irrigation-water distribution networks, pressure regulating devices for controlling the discharged flow rate by irrigation units are needed due to the variability of flow rate. In addition, applied water volume is used controlled operating the valve during a calculated time interval, and assuming constant flow rate. In general, a pressure regulating valve PRV is the commonly used pressure regulating device in a hydrant, which, also, executes the open and close function. A hydrant feeds several irrigation units, requiring a wide range in flow rate. In addition, some flow meters are also available, one as a component of the hydrant and the rest are placed downstream. Every land owner has one flow meter for each group of field plots downstream the hydrant. Its lecture could be used for refining the water balance but its accuracy must be taken into account. Ideal PRV performance would maintain a constant downstream pressure. However, the true performance depends on both upstream pressure and the discharged flow rate. The objective of this work is to asses the influence of the performance on the applied volume during the whole irrigation events in a year. The results of the study have been obtained introducing the flow rate into a PRV model. Variations on flow rate are simulated by taking into account the consequences of variations on climate conditions and also decisions in irrigation operation, such us duration and frequency application. The model comprises continuity, dynamic and energy equations of the components of the PRV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abnormalities of the aortic arch, as the most proximal site of the cardiovascular system, are of great interest due to its major role in blood distribution to all downstream members. Wall dissection is one of the disorders that an aorta may suffer due to hypertension or degradation of aortic wall properties. A geometrical change of the aortic arch caused by the dissected wall, and consequently the blood flow path, makes the time-varying flow curves to be different in comparison to the healthy aortic arch. This phenomenon modifies wall shear stress (WSS) history during the cardiac cycle. In the current work, the pulsatile blood flow in a typical Stanford A (DeBakey II) dissected aorta is simulated by CFD technique, STAR-CCM+. The boundary conditions are calculated based on a combination of the impedance boundary condition and the auto-regulation concept in the cardiovascular system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The linear instability of the three-dimensional boundary-layer over the HIFiRE-5 flight test geometry, i.e. a rounded-tip 2:1 elliptic cone, at Mach 7, has been analyzed through spatial BiGlobal analysis, in a effort to understand transition and accurately predict local heat loads on next-generation ight vehicles. The results at an intermediate axial section of the cone, Re x = 8x10 5, show three different families of spatially amplied linear global modes, the attachment-line and cross- ow modes known from earlier analyses, and a new global mode, peaking in the vicinity of the minor axis of the cone, termed \center-line mode". We discover that a sequence of symmetric and anti-symmetric centerline modes exist and, for the basic ow at hand, are maximally amplied around F* = 130kHz. The wavenumbers and spatial distribution of amplitude functions of the centerline modes are documented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El principal objetivo de este trabajo es aportar conocimiento para contestar la pregunta: ¿hasta que punto los ensayos en túnel aerodinámico pueden contribuir a determinar las características que afectan la respuesta dinámica de los aerogeneradores operando en terreno complejo?. Esta pregunta no es nueva, de hecho, el debate en la comunidad científica comenzó en el primer tercio del siglo pasado y aún está intensamente vivo. El método generalmente aceptado para enfrentar el mencionado problema consiste en analizar un caso de estudio determinado en el cual se aplican tanto ensayos a escala real como análisis computacionales y ensayos en túnel aerodinámico. Esto no es ni fácil ni barato. Esta es la razón por la cual desde el experimento de Askervein en 1988, los modelizadores del flujo atmosférico tuvieron que esperar hasta 2007 a que el experimento de Bolund fuese puesto en marcha con un despliegue de medios técnicos equivalentes (teniendo en cuenta la evolución de las tecnologías de sensores y computación). El problema contempla tantos aspectos que ambas experiencias fueron restringidas a condiciones de atmósfera neutra con efectos de Coriolis despreciables con objeto de reducir la complejidad. Este es el contexto en el que se ha desarrollado la presente tesis doctoral. La topología del flujo sobre la isla de Bolund ha sido estudiada mediante la reproducción del experimento de Bolund en los túneles aerodinámicos A9 y ACLA16 del IDR. Dos modelos de la isla de Bolund fueron fabricados a dos escalas, 1:230 y 1:115. El flujo de entrada en el túnel aerodinámico simulando la capa límite sin perturbar correspondía a régimen de transición (transitionally rough regime) y fue usado como situación de referencia. El modelo a escala 1:230 fue ensayado en el túnel A9 para determinar la presión sobre su superficie. La distribución del coeficiente de presión sobre la isla proporcionó una visualización y estimación de una región de desprendimiento sobre el pequeño acantilado situado al frente de la misma. Las medidas de presión instantánea con suficiente grado de resolución temporal pusieron de manifiesto la no estacionariedad en la región de desprendimiento. El modelo a escala 1:115 fue ensayado utilizando hilo caliente de tres componentes y un sistema de velocimetría por imágenes de partículas de dos componentes. El flujo fue caracterizado por el ratio de aceleración, el incremento normalizado de energía cinética turbulenta y los ángulos de inclinación y desviación horizontal. Los resultados a lo largo de la dirección 270°y alturas de 2 m y 5 m presentaron una gran similitud con los resultados a escala real del experimento de Bolund. Los perfiles verticales en las localizaciones de las torres meteorológicas mostraron un acuerdo significativo con los resultados a escala real. El análisis de los esfuerzos de Reynolds y el análisis espectral en las localizaciones de los mástiles meteorológicos presentaron niveles de acuerdo variados en ciertas posiciones, mientras que en otras presentaron claras diferencias. El mapeo horizontal del flujo, para una dirección de viento de 270°, permitió caracterizar el comportamiento de la burbuja intermitente de recirculación sobre el pequeño acantilado existente al frente de la isla así como de la región de relajación y de la capa de cortadura en la región corriente abajo de Bolund. Se realizaron medidas de velocidad con alta resolución espacial en planos perpendiculares a la dirección del flujo sin perturbar. Estas medidas permitieron detectar y caracterizar una estructura de flujo similar a un torbellino longitudinal con regiones con altos gradientes de velocidad y alta intensidad de turbulencia. Esta estructura de flujo es, sin duda, un reto para los modelos computacionales y puede considerarse un factor de riesgo para la operación de los aerogeneradores. Se obtuvieron y analizaron distribuciones espaciales de los esfuerzos de Reynolds mediante 3CHW y PIV. Este tipo de parámetros no constituyen parte de los resultados habituales en los ensayos en túnel sobre topografías y son muy útiles para los modelizadores que utilizan simulación de grades torbellinos (LES). Se proporciona una interpretación de los resultados obtenidos en el túnel aerodinámico en términos de utilidad para los diseñadores de parques eólicos. La evolución y variación de los parámetros del flujo a lo largo de líneas, planos y superficies han permitido identificar como estas propiedades del flujo podrían afectar la localización de los aerogeneradores y a la clasificación de emplazamientos. Los resultados presentados sugieren, bajo ciertas condiciones, la robustez de los ensayos en túnel para estudiar la topología sobre terreno complejo y su comparabilidad con otras técnicas de simulación, especialmente considerando el nivel de acuerdo del conjunto de resultados presentados con los resultados a escala real. De forma adicional, algunos de los parámetros del flujo obtenidos de las medidas en túnel son difícilmente determinables en ensayos a escala real o por medios computacionales, considerado el estado del arte. Este trabajo fue realizado como parte de las actividades subvencionadas por la Comisión Europea como dentro del proyecto FP7-PEOPLE-ITN-2008WAUDIT (Wind Resource Assessment Audit and Standardization) dentro de la FP7 Marie-Curie Initial Training Network y por el Ministerio Español de Economía y Competitividad dentro del proyecto ENE2012-36473, TURCO (Determinación en túnel aerodinámico de la distribución espacial de parámetros estadísticos de la turbulencia atmosférica sobre topografías complejas) del Plan Nacional de Investigación (Subprograma de investigación fundamental no orientada 2012). El informe se ha organizado en siete capítulos y un conjunto de anexos. En el primer capítulo se introduce el problema. En el capítulo dos se describen los medios experimentales utilizados. Seguidamente, en el capítulo tres, se analizan en detalle las condiciones de referencia del principal túnel aerodinámico utilizado en esta investigación. En el capítulo tres se presentan resultados de ensayos de presión superficial sobre un modelo de la isla. Los principales resultados del experimento de Bolund se reproducen en el capítulo cinco. En el capítulo seis se identifican diferentes estructuras del flujo sobre la isla y, finalmente, en el capitulo siete, se recogen las conclusiones y una propuesta de lineas de trabajo futuras. ABSTRACT The main objective of this work is to contribute to answer the question: to which extend can the wind tunnel testing contribute to determine the flow characteristics that affect the dynamic response of wind turbines operating in highly complex terrains?. This question is not new, indeed, the debate in the scientific community was opened in the first third of the past century and it is still intensely alive. The accepted approach to face this problem consists in analysing a given case study where full-scale tests, computational modelling and wind tunnel testing are applied to the same topography. This is neither easy nor cheap. This is is the reason why since the Askervein experience in 1988, the atmospheric flow modellers community had to wait till 2007 when the Bolund experiment was setup with a deployment of technical means equivalent (considering the evolution of the sensor and computing techniques). The problem is so manifold that both experiences were restricted to neutral conditions without Coriolis effects in order to reduce the complexity. This is the framework in which this PhD has been carried out. The flow topology over the Bolund Island has been studied by replicating the Bolund experiment in the IDR A9 and ACLA16 wind tunnels. Two mock-ups of the Bolund island were manufactured at two scales of 1:230 and 1:115. The in-flow in the empty wind tunnel simulating the incoming atmospheric boundary layer was in the transitionally rough regime and used as a reference case. The 1:230 model was tested in the A9 wind tunnel to measure surface pressure. The mapping of the pressure coefficient across the island gave a visualisation and estimation of a detachment region on the top of the escarpment in front of the island. Time resolved instantaneous pressure measurements illustrated the non-steadiness in the detachment region. The 1:115 model was tested using 3C hot-wires(HW) and 2C Particle Image Velocimetry(PIV). Measurements at met masts M3, M6, M7 and M8 and along Line 270°were taken to replicate the result of the Bolund experiment. The flow was characterised by the speed-up ratio, normalised increment of the turbulent kinetic energy, inclination angle and turning angle. Results along line 270°at heights of 2 m and 5 m compared very well with the full-scale results of the Bolund experiment. Vertical profiles at the met masts showed a significant agreement with the full-scale results. The analysis of the Reynolds stresses and the spectral analysis at the met mast locations gave a varied level of agreement at some locations while clear mismatch at others. The horizontal mapping of the flow field, for a 270°wind direction, allowed to characterise the behaviour of the intermittent recirculation bubble on top of the front escarpment followed by a relaxation region and the presence of a shear layer in the lee side of the island. Further detailed velocity measurements were taken at cross-flow planes over the island to study the flow structures on the island. A longitudinal vortex-like structure with high mean velocity gradients and high turbulent kinetic energy was characterised on the escarpment and evolving downstream. This flow structure is a challenge to the numerical models while posing a threat to wind farm designers when siting wind turbines. Spatial distribution of Reynold stresses were presented from 3C HW and PIV measurements. These values are not common results from usual wind tunnel measurements and very useful for modellers using large eddy simulation (LES). An interpretation of the wind tunnel results in terms of usefulness to wind farm designers is given. Evolution and variation of the flow parameters along measurement lines, planes and surfaces indicated how the flow field could affect wind turbine siting. Different flow properties were presented so compare the level of agreement to full-scale results and how this affected when characterising the site wind classes. The results presented suggest, under certain conditions, the robustness of the wind tunnel testing for studying flow topology over complex terrain and its capability to compare to other modelling techniques especially from the level of agreement between the different data sets presented. Additionally, some flow parameters obtained from wind tunnel measurements would have been quite difficult to be measured at full-scale or by computational means considering the state of the art. This work was carried out as a part of the activities supported by the EC as part of the FP7- PEOPLE-ITN-2008 WAUDIT project (Wind Resource Assessment Audit and Standardization) within the FP7 Marie-Curie Initial Training Network and by the Spanish Ministerio de Economía y Competitividad, within the framework of the ENE2012-36473, TURCO project (Determination of the Spatial Distribution of Statistic Parameters of Flow Turbulence over Complex Topographies in Wind Tunnel) belonging to the Spanish National Program of Research (Subprograma de investigación fundamental no orientada 2012). The report is organised in seven chapters and a collection of annexes. In chapter one, the problem is introduced. In chapter two the experimental setup is described. Following, in chapter three, the inflow conditions of the main wind tunnel used in this piece of research are analysed in detail. In chapter three, preliminary pressure tests results on a model of the island are presented. The main results from the Bolund experiment are replicated in chapter five. In chapter six, an identification of specific flow strutures over the island is presented and, finally, in chapter seven, conclusions and lines for future works related to the presented one are included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In some countries, such as Spain, it is very common that in the same corridor there are two roads with the same origin and destination but with some differences. The most important contrast is that one is a toll highway which offers a better quality than the parallel road in exchange of a price. The users decide if the price of the toll is worth to pay for the advantages offered. This problem is known as the untolled alternative and it has been largely studied in the academic literature, particularly related to economic efficiency and the optimal welfare toll. However, there is a gap in the literature academic regarding how it affects income distribution to the optimal toll. The main objective of the paper is to fill this gap. In this paper a theoretical model in order to obtain the optimal welfare price in a toll highway that competes for capturing the traffic with a conventional road is developed. This model is done for non-usual users who decide over the expectation of free flow conditions. This model is finally applied to the variables we want to focus on: average value of travel time (VTT) which is strongly related with income, dispersion of this VTT and traffic levels, from free flow to congestion. Derived from the results, we conclude that the higher the average VTT the higher the optimal price, the higher the dispersion of this VTT the lower the optimal price and finally, the more the traffic the higher the optimal toll.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we use large eddy simulations (LES) and Lagrangian tracking to study the influence of gravity on particle statistics in a fully developed turbulent upward/downward flow in a vertical channel and pipe at matched Kàrmàn number. Only drag and gravity are considered in the equation of motion for solid particles, which are assumed to have no influence on the flow field. Particle interactions with the wall are fully elastic. Our findings obtained from the particle statistics confirm that: (i) the gravity seems to modify both the quantitative and qualitative behavior of the particle distribution and statistics of the particle velocity in wall normal direction; (ii) however, only the quantitative behavior of velocity particle in streamwise direction and the root mean square of velocity components is modified; (iii) the statistics of fluid and particles coincide very well near the wall in channel and pipe flow with equal Kàrmàn number; (iv) pipe curvature seems to have quantitative and qualitative influence on the particle velocity and on the particle concentration in wall normal direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In some countries, such as Spain, it is very common that in the same corridor there are two roads with the same origin and destination but with some differences. The most important contrast is that one is a toll highway which offers a better quality than the parallel road in exchange of a price. The users decide if the price of the toll is worth paying for the advantages offered. This problem is known as the untolled alternative and it has been largely studied in the academic literature, particularly related to economic efficiency and the optimal welfare toll. However, there is a gap in the academic literature regarding how income distribution affects the optimal toll. The main objective of the paper is to fill this gap. In this paper a theoretical model is developed in order to obtain the optimal welfare price in a toll highway that competes with a conventional road for capturing the traffic. This model is done for non-usual users who decide over the expectation of free flow conditions. This model is finally applied to the variables we want to focus on: average value of travel time (VTT) which is strongly related with income, dispersion of this VTT and traffic levels, from free flow to congestion. Derived from the results, we conclude that the higher the average VTT the higher the optimal price, the higher the dispersion of this VTT the lower the optimal price and finally, the more the traffic the higher the optimal toll