3 resultados para Flexural properties

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon fiber (CF)-reinforced high-temperature thermoplastics such as poly(phenylene sulphide) (PPS) are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS2) lubricant nanoparticles were used to manufacture PPS/IF-WS2/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS2 loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS2 improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (Tg). IF-WS2 contents higher than 0.5 wt % increased Tg and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS2 are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel carbon fiber (CF)-reinforced poly(phenylene sulphide) (PPS) laminates incorporating inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles were prepared via melt-blending and hot-press processing. The influence of the IF-WS2 on the morphology, thermal, mechanical and tribological properties of PPS/CF composites was investigated. Efficient nanoparticle dispersion within the matrix was attained without using surfactants. A progressive rise in thermal stability was found with increasing IF-WS2 loading, as revealed by thermogravimetric analysis. The addition of low nanoparticle contents retarded the crystallization of the matrix, whereas concentrations equal or higher than 1.0 wt% increased both the crystallization temperature and degree of crystallinity compared to those of PPS/CF. Mechanical tests indicated that with only 1.0 wt% IF-WS2 the flexural modulus and strength of PPS/CF improved by 17 and 14%, respectively, without loss in toughness, ascribed to a synergistic effect between the two fillers. A significant enhancement in the storage modulus and glass transition temperature was also observed. Moreover, the wear rate and coefficient of friction strongly decreased, attributed to the lubricant role of the IF-WS2 combined with their reinforcing effect. These inorganic nanoparticles show great potential to improve the mechanical and tribological properties of conventional thermoplastic/CF composites for structural applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Directionally solidified Al2O3–Er3Al5O12–ZrO2 eutectic rods were processed using the laser floating zone method at growth rates of 25, 350and 750 mm/h to obtain microstructures with different domain size. The mechanical properties were investigated as a function of the processing rate. The hardness, 15.6 GPa, and the fracture toughness, 4 MPa m1/2, obtained from Vickers indentation at room temperature were practically independent of the size of the eutectic phases. However, the flexural strength increased as the domain size decreased, reaching outstanding strength values close to 3 GPa in the samples grown at 750 mm/h. A high retention of the flexural strength was observed up to 1500 K in the materials processed at 25 and 350 mm/h, while superplastic behaviour was observed at 1700 K in the eutectic rods solidified at the highest rate of 750 mm/h