2 resultados para Filtragem determinística
em Universidad Politécnica de Madrid
Resumo:
El enriquecimiento del conocimiento sobre la Irradiancia Solar (IS) a nivel de superficie terrestre, así como su predicción, cobran gran interés para las Energías Renovables (ER) - Energía Solar (ES)-, y para distintas aplicaciones industriales o ecológicas. En el ámbito de las ER, el uso óptimo de la ES implica contar con datos de la IS en superficie que ayuden tanto, en la selección de emplazamientos para instalaciones de ES, como en su etapa de diseño (dimensionar la producción) y, finalmente, en su explotación. En este último caso, la observación y la predicción es útil para el mercado energético, la planificación y gestión de la energía (generadoras y operadoras del sistema eléctrico), especialmente en los nuevos contextos de las redes inteligentes de transporte. A pesar de la importancia estratégica de contar con datos de la IS, especialmente los observados por sensores de IS en superficie (los que mejor captan esta variable), estos no siempre están disponibles para los lugares de interés ni con la resolución espacial y temporal deseada. Esta limitación se une a la necesidad de disponer de predicciones a corto plazo de la IS que ayuden a la planificación y gestión de la energía. Se ha indagado y caracterizado las Redes de Estaciones Meteorológicas (REM) existentes en España que publican en internet sus observaciones, focalizando en la IS. Se han identificado 24 REM (16 gubernamentales y 8 redes voluntarios) que aglutinan 3492 estaciones, convirtiéndose éstas en las fuentes de datos meteorológicos utilizados en la tesis. Se han investigado cinco técnicas de estimación espacial de la IS en intervalos de 15 minutos para el territorio peninsular (3 técnicas geoestadísticas, una determinística y el método HelioSat2 basado en imágenes satelitales) con distintas configuraciones espaciales. Cuando el área de estudio tiene una adecuada densidad de observaciones, el mejor método identificado para estimar la IS es el Kriging con Regresión usando variables auxiliares -una de ellas la IS estimada a partir de imágenes satelitales-. De este modo es posible estimar espacialmente la IS más allá de los 25 km identificados en la bibliografía. En caso contrario, se corrobora la idoneidad de utilizar estimaciones a partir de sensores remotos cuando la densidad de observaciones no es adecuada. Se ha experimentado con el modelado de Redes Neuronales Artificiales (RNA) para la predicción a corto plazo de la IS utilizando observaciones próximas (componentes espaciales) en sus entradas y, los resultados son prometedores. Así los niveles de errores disminuyen bajo las siguientes condiciones: (1) cuando el horizonte temporal de predicción es inferior o igual a 3 horas, las estaciones vecinas que se incluyen en el modelo deben encentrarse a una distancia máxima aproximada de 55 km. Esto permite concluir que las RNA son capaces de aprender cómo afectan las condiciones meteorológicas vecinas a la predicción de la IS. ABSTRACT ABSTRACT The enrichment of knowledge about the Solar Irradiance (SI) at Earth's surface and its prediction, have a high interest for Renewable Energy (RE) - Solar Energy (SE) - and for various industrial and environmental applications. In the field of the RE, the optimal use of the SE involves having SI surface to help in the selection of sites for facilities ES, in the design stage (sizing energy production), and finally on their production. In the latter case, the observation and prediction is useful for the market, planning and management of the energy (generators and electrical system operators), especially in new contexts of smart transport networks (smartgrid). Despite the strategic importance of SI data, especially those observed by sensors of SI at surface (the ones that best measure this environmental variable), these are not always available to the sights and the spatial and temporal resolution desired. This limitation is bound to the need for short-term predictions of the SI to help planning and energy management. It has been investigated and characterized existing Networks of Weather Stations (NWS) in Spain that share its observations online, focusing on SI. 24 NWS have been identified (16 government and 8 volunteer networks) that implies 3492 stations, turning it into the sources of meteorological data used in the thesis. We have investigated five technical of spatial estimation of SI in 15 minutes to the mainland (3 geostatistical techniques and HelioSat2 a deterministic method based on satellite images) with different spatial configurations. When the study area has an adequate density of observations we identified the best method to estimate the SI is the regression kriging with auxiliary variables (one of them is the SI estimated from satellite images. Thus it is possible to spatially estimate the SI beyond the 25 km identified in the literature. Otherwise, when the density of observations is inadequate the appropriateness is using the estimates values from remote sensing. It has been experimented with Artificial Neural Networks (ANN) modeling for predicting the short-term future of the SI using observations from neighbor’s weather stations (spatial components) in their inputs, and the results are promising. The error levels decrease under the following conditions: (1) when the prediction horizon is less or equal than 3 hours the best models are the ones that include data from the neighboring stations (at a maximum distance of 55 km). It is concluded that the ANN is able to learn how weather conditions affect neighboring prediction of IS at such Spatio-temporal horizons.
Resumo:
La seguridad y fiabilidad de los procesos industriales son la principal preocupación de los ingenieros encargados de las plantas industriales. Por lo tanto, desde un punto de vista económico, el objetivo principal es reducir el costo del mantenimiento, el tiempo de inactividad y las pérdidas causadas por los fallos. Por otra parte, la seguridad de los operadores, que afecta a los aspectos sociales y económicos, es el factor más relevante a considerar en cualquier sistema Debido a esto, el diagnóstico de fallos se ha convertido en un foco importante de interés para los investigadores de todo el mundo e ingenieros en la industria. Los principales trabajos enfocados en detección de fallos se basan en modelos de los procesos. Existen diferentes técnicas para el modelado de procesos industriales tales como máquinas de estado, árboles de decisión y Redes de Petri (RdP). Por lo tanto, esta tesis se centra en el modelado de procesos utilizando redes de petri interpretadas. Redes de Petri es una herramienta usada en el modelado gráfico y matemático con la habilidad para describir información de los sistemas de una manera concurrente, paralela, asincrona, distribuida y no determinística o estocástica. RdP son también una herramienta de comunicación visual gráfica útil como lo son las cartas de flujo o diagramas de bloques. Adicionalmente, las marcas de las RdP simulan la dinámica y concurrencia de los sistemas. Finalmente, ellas tienen la capacidad de definir ecuaciones de estado específicas, ecuaciones algebraicas y otros modelos que representan el comportamiento común de los sistemas. Entre los diferentes tipos de redes de petri (Interpretadas, Coloreadas, etc.), este trabajo de investigación trata con redes de petri interpretadas principalmente debido a características tales como sincronización, lugares temporizados, aparte de su capacidad para procesamiento de datos. Esta investigación comienza con el proceso para diseñar y construir el modelo y diagnosticador para detectar fallos definitivos, posteriormente, la dinámica temporal fue adicionada para detectar fallos intermitentes. Dos procesos industriales, concretamente un HVAC (Calefacción, Ventilación y Aire Acondicionado) y un Proceso de Envasado de Líquidos fueron usados como banco de pruebas para implementar la herramienta de diagnóstico de fallos (FD) creada. Finalmente, su capacidad de diagnóstico fue ampliada en orden a detectar fallos en sistemas híbridos. Finalmente, un pequeño helicóptero no tripulado fue elegido como ejemplo de sistema donde la seguridad es un desafío, y las técnicas de detección de fallos desarrolladas en esta tesis llevan a ser una herramienta valorada, desde que los accidentes de las aeronaves no tripuladas (UAVs) envuelven un alto costo económico y son la principal razón para introducir restricciones de volar sobre áreas pobladas. Así, este trabajo introduce un proceso sistemático para construir un Diagnosticador de Fallos del sistema mencionado basado en RdR Esta novedosa herramienta es capaz de detectar fallos definitivos e intermitentes. El trabajo realizado es discutido desde un punto de vista teórico y práctico. El procedimiento comienza con la división del sistema en subsistemas para seguido integrar en una RdP diagnosticadora global que es capaz de monitorear el sistema completo y mostrar las variables críticas al operador en orden a determinar la salud del UAV, para de esta manera prevenir accidentes. Un Sistema de Adquisición de Datos (DAQ) ha sido también diseñado para recoger datos durante los vuelos y alimentar la RdP diagnosticadora. Vuelos reales realizados bajo condiciones normales y de fallo han sido requeridos para llevar a cabo la configuración del diagnosticador y verificar su comportamiento. Vale la pena señalar que un alto riesgo fue asumido en la generación de fallos durante los vuelos, a pesar de eso esto permitió recoger datos básicos para desarrollar el diagnóstico de fallos, técnicas de aislamiento, protocolos de mantenimiento, modelos de comportamiento, etc. Finalmente, un resumen de la validación de resultados obtenidos durante las pruebas de vuelo es también incluido. Un extensivo uso de esta herramienta mejorará los protocolos de mantenimiento para UAVs (especialmente helicópteros) y permite establecer recomendaciones en regulaciones. El uso del diagnosticador usando redes de petri es considerado un novedoso enfoque. ABSTRACT Safety and reliability of industrial processes are the main concern of the engineers in charge of industrial plants. Thus, from an economic point of view, the main goal is to reduce the maintenance downtime cost and the losses caused by failures. Moreover, the safety of the operators, which affects to social and economic aspects, is the most relevant factor to consider in any system. Due to this, fault diagnosis has become a relevant focus of interest for worldwide researchers and engineers in the industry. The main works focused on failure detection are based on models of the processes. There are different techniques for modelling industrial processes such as state machines, decision trees and Petri Nets (PN). Thus, this Thesis is focused on modelling processes by using Interpreted Petri Nets. Petri Nets is a tool used in the graphic and mathematical modelling with ability to describe information of the systems in a concurrent, parallel, asynchronous, distributed and not deterministic or stochastic manner. PNs are also useful graphical visual communication tools as flow chart or block diagram. Additionally, the marks of the PN simulate the dynamics and concurrence of the systems. Finally, they are able to define specific state equations, algebraic equations and other models that represent the common behaviour of systems. Among the different types of PN (Interpreted, Coloured, etc.), this research work deals with the interpreted Petri Nets mainly due to features such as synchronization capabilities, timed places, apart from their capability for processing data. This Research begins with the process for designing and building the model and diagnoser to detect permanent faults, subsequently, the temporal dynamic was added for detecting intermittent faults. Two industrial processes, namely HVAC (Heating, Ventilation and Air Condition) and Liquids Packaging Process were used as testbed for implementing the Fault Diagnosis (FD) tool created. Finally, its diagnostic capability was enhanced in order to detect faults in hybrid systems. Finally, a small unmanned helicopter was chosen as example of system where safety is a challenge and fault detection techniques developed in this Thesis turn out to be a valuable tool since UAVs accidents involve high economic cost and are the main reason for setting restrictions to fly over populated areas. Thus, this work introduces a systematic process for building a Fault Diagnoser of the mentioned system based on Petri Nets. This novel tool is able to detect both intermittent and permanent faults. The work carried out is discussed from theoretical and practical point of view. The procedure begins with a division of the system into subsystems for further integration into a global PN diagnoser that is able to monitor the whole system and show critical variables to the operator in order to determine the UAV health, preventing accidents in this manner. A Data Acquisition System (DAQ) has been also designed for collecting data during the flights and feed PN Diagnoser. Real flights carried out under nominal and failure conditions have been required to perform the diagnoser setup and verify its performance. It is worth noting that a high risk was assumed in the generation of faults during the flights, nevertheless this allowed collecting basic data so as to develop fault diagnosis, isolations techniques, maintenance protocols, behaviour models, etc. Finally, a summary of the validation results obtained during real flight tests is also included. An extensive use of this tool will improve preventive maintenance protocols for UAVs (especially helicopters) and allow establishing recommendations in regulations. The use of the diagnoser by using Petri Nets is considered as novel approach.