29 resultados para Fibras musculares
em Universidad Politécnica de Madrid
Resumo:
Las aleaciones metálicas que exhiben una propiedad conocida como efecto de memoria de forma, pertenecen a la clase de materiales inteligentes cuya aplicación más notable en el campo de la robótica se refleja en el uso de actuadores musculares artificiales, ó músculos inteligentes. Estos materiales tienen una estructura cristalina uniforme que cambia radicalmente en función de su temperatura de transición, causando su deformación. Se les denomina materiales inteligentes por la capacidad de recordar su configuración inicial después de recibir dicho estímulo térmico. Este artículo presenta la implementación de un actuador muscular inteligente aplicado en un micro-robot aéreo bio-inspirado tipo murciélago. Esto mamíferos voladores desarrollaron poderosos músculos que se extienden a lo largo de la estructura ósea de las alas, adquiriendo una asombrosa capacidad de maniobra gracias a la capacidad de cambiar la forma del ala durante el vuelo. Replicar este tipo de alas mórficas en un prototipo robótico requiere el análisis de nuevas tecnologías de actuación, abordando los problemas de modelado y control que garanticen la aplicabilidad de este actuador compuesto por fibras musculares de SMAs
Resumo:
Los peces son animales, donde en la mayoría de los casos, son considerados como nadadores muy eficientes y con una alta capacidad de maniobra. En general los peces se caracterizan por su capacidad de maniobra, locomoción silencioso, giros y partidas rápidas y viajes de larga distancia. Los estudios han identificado varios tipos de locomoción que los peces usan para generar maniobras y natación constante. A bajas velocidades la mayoría de los peces utilizan sus aletas pares y / o impares para su locomoción, que ofrecen una mayor maniobrabilidad y mejor eficiencia de propulsión. A altas velocidades la locomoción implica el cuerpo y / o aleta caudal porque esto puede lograr un mayor empuje y aceleración. Estas características pueden inspirar el diseo y fabricación de una piel muy flexible, una aleta caudal mórfica y una espina dorsal no articulada con una gran capacidad de maniobra. Esta tesis presenta el desarrollo de un novedoso pez robot bio-inspirado y biomimético llamado BR3, inspirado en la capacidad de maniobra y nado constante de los peces vertebrados. Inspirado por la morfología de los peces Micropterus salmoides o también conocido como lubina negra, el robot BR3 utiliza su fundamento biológico para desarrollar modelos y métodos matemáticos precisos que permiten imitar la locomoción de los peces reales. Los peces Largemouth Bass pueden lograr un nivel increíble de maniobrabilidad y eficacia de la propulsión mediante la combinación de los movimientos ondulatorios y aletas morficas. Para imitar la locomoción de los peces reales en una contraparte artificial se necesita del análisis de tecnologías de actuación alternativos, como arreglos de fibras musculares en lugar de servo actuadores o motores DC estándar, así como un material flexible que proporciona una estructura continua sin juntas. Las aleaciones con memoria de forma (SMAs) proveen la posibilidad de construir robots livianos, que no emiten ruido, sin motores, sin juntas y sin engranajes. Asi es como un pez robot submarino se ha desarrollado y cuyos movimientos son generados mediante SMAs. Estos actuadores son los adecuados para doblar la espina dorsal continua del pez robot, que a su vez provoca un cambio en la curvatura del cuerpo. Este tipo de arreglo estructural está inspirado en los músculos rojos del pescado, que son usados principalmente durante la natación constante para la flexión de una estructura flexible pero casi incompresible como lo es la espina dorsal de pescado. Del mismo modo la aleta caudal se basa en SMAs y se modifica para llevar a cabo el trabajo necesario. La estructura flexible proporciona empuje y permite que el BR3 nade. Por otro lado la aleta caudal mórfica proporciona movimientos de balanceo y guiada. Motivado por la versatilidad del BR3 para imitar todos los modos de natación (anguilliforme, carangiforme, subcarangiforme y tunniforme) se propone un controlador de doblado y velocidad. La ley de control de doblado y velocidad incorpora la información del ángulo de curvatura y de la frecuencia para producir el modo de natación deseado y a su vez controlar la velocidad de natación. Así mismo de acuerdo con el hecho biológico de la influencia de la forma de la aleta caudal en la maniobrabilidad durante la natación constante se propone un control de actitud. Esta novedoso robot pescado es el primero de su tipo en incorporar sólo SMAs para doblar una estructura flexible continua y sin juntas y engranajes para producir empuje e imitar todos los modos de natación, así como la aleta caudal que es capaz de cambiar su forma. Este novedoso diseo mecatrónico presenta un futuro muy prometedor para el diseo de vehículos submarinos capaces de modificar su forma y nadar mas eficientemente. La nueva metodología de control propuesto en esta tesis proporcionan una forma totalmente nueva de control de robots basados en SMAs, haciéndolos energéticamente más eficientes y la incorporación de una aleta caudal mórfica permite realizar maniobras más eficientemente. En su conjunto, el proyecto BR3 consta de cinco grandes etapas de desarrollo: • Estudio y análisis biológico del nado de los peces con el propósito de definir criterios de diseño y control. • Formulación de modelos matemáticos que describan la: i) cinemática del cuerpo, ii) dinámica, iii) hidrodinámica iv) análisis de los modos de vibración y v) actuación usando SMA. Estos modelos permiten estimar la influencia de modular la aleta caudal y el doblado del cuerpo en la producción de fuerzas de empuje y fuerzas de rotación necesarias en las maniobras y optimización del consumo de energía. • Diseño y fabricación de BR3: i) estructura esquelética de la columna vertebral y el cuerpo, ii) mecanismo de actuación basado en SMAs para el cuerpo y la aleta caudal, iii) piel artificial, iv) electrónica embebida y v) fusión sensorial. Está dirigido a desarrollar la plataforma de pez robot BR3 que permite probar los métodos propuestos. • Controlador de nado: compuesto por: i) control de las SMA (modulación de la forma de la aleta caudal y regulación de la actitud) y ii) control de nado continuo (modulación de la velocidad y doblado). Está dirigido a la formulación de los métodos de control adecuados que permiten la modulación adecuada de la aleta caudal y el cuerpo del BR3. • Experimentos: está dirigido a la cuantificación de los efectos de: i) la correcta modulación de la aleta caudal en la producción de rotación y su efecto hidrodinámico durante la maniobra, ii) doblado del cuerpo para la producción de empuje y iii) efecto de la flexibilidad de la piel en la habilidad para doblarse del BR3. También tiene como objetivo demostrar y validar la hipótesis de mejora en la eficiencia de la natación y las maniobras gracias a los nuevos métodos de control presentados en esta tesis. A lo largo del desarrollo de cada una de las cinco etapas, se irán presentando los retos, problemáticas y soluciones a abordar. Los experimentos en canales de agua estarán orientados a discutir y demostrar cómo la aleta caudal y el cuerpo pueden afectar considerablemente la dinámica / hidrodinámica de natación / maniobras y cómo tomar ventaja de la modulación de curvatura que la aleta caudal mórfica y el cuerpo permiten para cambiar correctamente la geometría de la aleta caudal y del cuerpo durante la natación constante y maniobras. ABSTRACT Fishes are animals where in most cases are considered as highly manoeuvrable and effortless swimmers. In general fishes are characterized for his manoeuvring skills, noiseless locomotion, rapid turning, fast starting and long distance cruising. Studies have identified several types of locomotion that fish use to generate maneuvering and steady swimming. At low speeds most fishes uses median and/or paired fins for its locomotion, offering greater maneuverability and better propulsive efficiency At high speeds the locomotion involves the body and/or caudal fin because this can achieve greater thrust and accelerations. This can inspire the design and fabrication of a highly deformable soft artificial skins, morphing caudal fins and non articulated backbone with a significant maneuverability capacity. This thesis presents the development of a novel bio-inspired and biomimetic fishlike robot (BR3) inspired by the maneuverability and steady swimming ability of ray-finned fishes (Actinopterygii, bony fishes). Inspired by the morphology of the Largemouth Bass fish, the BR3 uses its biological foundation to develop accurate mathematical models and methods allowing to mimic fish locomotion. The Largemouth Bass fishes can achieve an amazing level of maneuverability and propulsive efficiency by combining undulatory movements and morphing fins. To mimic the locomotion of the real fishes on an artificial counterpart needs the analysis of alternative actuation technologies more likely muscle fiber arrays instead of standard servomotor actuators as well as a bendable material that provides a continuous structure without joins. The Shape Memory Alloys (SMAs) provide the possibility of building lightweight, joint-less, noise-less, motor-less and gear-less robots. Thus a swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. Likewise the caudal fin is based on SMAs and is customized to provide the necessary work out. The bendable structure provides thrust and allows the BR3 to swim. On the other hand the morphing caudal fin provides roll and yaw movements. Motivated by the versatility of the BR3 to mimic all the swimming modes (anguilliform, caranguiform, subcaranguiform and thunniform) a bending-speed controller is proposed. The bending-speed control law incorporates bend angle and frequency information to produce desired swimming mode and swimming speed. Likewise according to the biological fact about the influence of caudal fin shape in the maneuverability during steady swimming an attitude control is proposed. This novel fish robot is the first of its kind to incorporate only SMAs to bend a flexible continuous structure without joints and gears to produce thrust and mimic all the swimming modes as well as the caudal fin to be morphing. This novel mechatronic design is a promising way to design more efficient swimming/morphing underwater vehicles. The novel control methodology proposed in this thesis provide a totally new way of controlling robots based on SMAs, making them more energy efficient and the incorporation of a morphing caudal fin allows to perform more efficient maneuvers. As a whole, the BR3 project consists of five major stages of development: • Study and analysis of biological fish swimming data reported in specialized literature aimed at defining design and control criteria. • Formulation of mathematical models for: i) body kinematics, ii) dynamics, iii) hydrodynamics, iv) free vibration analysis and v) SMA muscle-like actuation. It is aimed at modelling the e ects of modulating caudal fin and body bend into the production of thrust forces for swimming, rotational forces for maneuvering and energy consumption optimisation. • Bio-inspired design and fabrication of: i) skeletal structure of backbone and body, ii) SMA muscle-like mechanisms for the body and caudal fin, iii) the artificial skin, iv) electronics onboard and v) sensor fusion. It is aimed at developing the fish-like platform (BR3) that allows for testing the methods proposed. • The swimming controller: i) control of SMA-muscles (morphing-caudal fin modulation and attitude regulation) and ii) steady swimming control (bend modulation and speed modulation). It is aimed at formulating the proper control methods that allow for the proper modulation of BR3’s caudal fin and body. • Experiments: it is aimed at quantifying the effects of: i) properly caudal fin modulation into hydrodynamics and rotation production for maneuvering, ii) body bending into thrust generation and iii) skin flexibility into BR3 bending ability. It is also aimed at demonstrating and validating the hypothesis of improving swimming and maneuvering efficiency thanks to the novel control methods presented in this thesis. This thesis introduces the challenges and methods to address these stages. Waterchannel experiments will be oriented to discuss and demonstrate how the caudal fin and body can considerably affect the dynamics/hydrodynamics of swimming/maneuvering and how to take advantage of bend modulation that the morphing-caudal fin and body enable to properly change caudal fin and body’ geometry during steady swimming and maneuvering.
Resumo:
Este trabajo estudia el comportamiento de conglomerantes a base de yeso agregados con Residuos de Construcción y demolición (RCD) como fibras recuperadas de eslingas textiles de un solo uso, incorporadas en tres porcentajes y comparando con una muestra de referencia.Las eslingas textiles de un solo uso, tienen como origen, dos obras situadas en la Comunidad de Madrid (Centro de Neurociencias Ramón y Cajal) y la Comunidad de Castilla la Mancha (Nuevo Hospital de Cuenca). Han sido estudiadas las propiedades de las eslingas y se han realizado ensayos de laboratorio para investigar el comportamiento de las probetas estudiadas con un porcentaje de 5%, 7,5%, 10%, de fibras agregadas a la matriz de morteros de conglomerantes a base de yeso. Los resultados demuestran que el comportamiento de las probetas con agregados de fibras con origen de eslingas textiles de un solo uso, tienen un mejor comportamiento en general que aquellas probetas con agregados de fibra comercial referente a las resistencias mecánicas obtenidas de los ensayos realizados.
Resumo:
Los polímeros armados con fibras (FRP) se utilizan en refuerzos de estructuras de hormigón debido sobre todo a sus excelentes propiedades mecánicas, su resistencia a la corrosión y a su ligereza que se traduce en facilidad y ahorro en el transporte, puesta en obra y aplicación, la cual se realiza de forma muy rápida, con pocos operarios y utilizando medios auxiliares ligeros, minimizándose las interrupciones del uso de la estructura y las molestias a los usuarios. Las razones presentadas anteriormente, han despertado un gran inter´es por parte de diferentes grupos de investigación a nivel mundial y que actualmente se encuentran desarrollando nuevas técnicas de aplicación y métodos de cálculo. Sin embargo, las investigaciones realizadas hasta la fecha, muestran un procedimiento bien definido y aceptado en lo referente al cálculo a flexión, lo cual no ocurre con el refuerzo a cortante y aunque se ha demostrado que el refuerzo con FRP es un sistema eficaz para incrementar la capacidad ´ultima frente a esfuerzos cortantes, también se pone de manifiesto la necesidad de más estudios experimentales y teóricos para avanzar en el entendimiento de los mecanismos involucrados para este tipo de refuerzo y establecer un procedimiento de diseño apropiado que maximice las excelentes propiedades de este material. Los modelos que explican el comportamiento del refuerzo a cortante de elementos de hormigón armado son complejos y sin transposición directa a fórmulas ingenieriles. Las normas actualmente en vigor, generalmente, establecen empíricamente la capacidad cortante como la suma de las capacidades del hormigón y el refuerzo transversal de acero. Cuando un elemento es reforzado externamente con FRP, los modelos son evidentemente aun más complejos. Las guías y recomendaciones existentes proponen calcular la capacidad del elemento añadiendo la resistencia aportada por el refuerzo externo de FRP a la ya dada por el hormigón y acero transversal. Sin embargo, la idoneidad de este acercamiento es cuestionable puesto que no tiene en cuenta una posible interacción entre refuerzos. Con base en lo anterior se da origen al tema objeto de este trabajo, el cual está orientado al estudio a cortante de elementos de hormigón armado (HA), reforzados externamente con material compuesto de tejido unidireccional de fibra de carbono y resina epoxi. Inicialmente se hace una completa revisión del estado actual del conocimiento de la resistencia a cortante en elementos de hormigón armado con y sin refuerzo externo de FRP, prestando especial atención en los mecanismos actuantes estudiados hasta la fecha. La bibliografía consultada ha sido exhaustiva y actualizada lo que ha permitido el estudio de los modelos propuestos más importantes, tanto para la descripción del fenómeno de adherencia entre hormigón-FRP como de la valoración del aporte al cortante total hecho por el FRP, a través de sendas bases de datos de ensayos de pull-out y de vigas de hormigón armado ensayadas a cortante. Con base en todo lo anterior, se expusieron los mecanismos actuantes en el aporte a cortante hecho por el FRP en elementos de hormigón armado y la forma como las principales guías de cálculo existentes hasta la fecha los abordan. De igual forma se define un modelo de resistencia de esfuerzos para el FRP y se proponen dos modelos para el cálculo de las tensiones o deformaciones efectivas, de los cuales uno esta basado en el modelo de adherencia propuesto por Oller (2005) y el otro en una regresión multivariante para los mecanismos expuestos. Como complemento del estudio de los trabajos encontrados en la literatura, se lleva acabo un programa experimental que, además de aportar más registros a la exigua base de datos existentes, aporte mayor luz a los puntos que se consideran están deficientemente resueltos. Dentro de este programa se realizaron 32 ensayos sobre 16 vigas de 4.5 m de longitud (dos ensayos por viga), reforzadas a cortante con tejido unidireccional de CFRP. Finalmente, estos estudios han permitido proponer modificaciones a las formulaciones existentes en los códigos y guías en vigor. Abstract Its excellent mechanical properties, as well as its corrosion resistance and light weight, which make it easy to apply and inexpensive to ship to the worksite, are the basis of the extended use of fiber reinforced polymer (FRP) as external strengthening for structures. FRP strengthening is a rapid operation calling for only limited labor and lightweight ancillary equipment, all of which minimizes both the interruption of facility usage and user inconvenience. These advantages have aroused considerable interest in civil engineering science and technology and have led to countless applications the world over. Research studies on the shear strength of FRP-strengthened members have been much fewer in number and more controversial than the research on flexural strengthening, for which a more or less standardized and generally accepted procedure has been established. The research conducted and a host of applications around the world have shown that FRP strengthening is an effective technique for raising ultimate shear strength, but it has also revealed a need for further experimental and theoretical research to advance in the understanding of the mechanisms involved and establish suitable design procedures that optimize the excellent properties of this material The models that explain reinforced concrete (RC) shear strength behavior are complex and cannot be directly transposed to engineering formulas. The standards presently in place generally establish shear capacity empirically as the sum of the capacities of the concrete and the passive reinforcement. When members are externally strengthened with FRP, the models are obviously even more complex. The existing guides and recommendations propose calculating capacity by adding the external strength provided by the FRP to the contributions of the concrete and passive reinforcement. The suitability of this approach is questionable, however, because it fails to consider the interaction between passive reinforcement and external strengthening. The subject of this work is based in above, which is focused on externally shear strengthening for reinforced concrete members with unidirectional carbon fiber sheets bonded with epoxy resin. v Initially a thorough literature review on shear of reinforced concrete beams with and without external FRP strengthening was performed, paying special attention to the acting mechanisms studied to date, which allowed the study of the most important models both to describe the bond phenomenon as well as calculating the FRP shear contribution, through separate databases of pull-out tests and shear tests on reinforced concrete beams externally strengthened with FRP. Based on above, they were exposed the acting mechanisms in a FRP shear strengthening on reinforced concrete beams and how guidelines deal the topic. The same way, it is defined a FRP stress strength model and two more models are proposed for calculating the effective stress, one of these is based on the Oller (2005) bond model and another one is the data best fit, taking into account most of the acting mechanisms. To complement the theoretical part we develop an experimental program that, in addition to providing more records to the meager existing database provide greater understanding to the points considered poorly resolved. The test program included 32 tests of 16 beams (2 per beam) of 4.5 m long, shear strengthened with FRP, externally. Finally, modifications to the existing codes and guidelines are proposed.
Resumo:
El objetivo principal de este trabajo ha sido estudiar el comportamiento de vigas de hormigón, reforzadas a cortante con tejidos de fibra de carbono pegados con resinas epoxi. Para conseguir este objetivo se han planteado objetivos parciales como el análisis de la fisuración y de los movimientos en las vigas reforzadas. La metodología empleada ha sido principalmente experimental, realizándose una serie de diez vigas de hormigón en masa o armado. Se han comparado los resultados experimentales con los teóricos, obtenidos mediante la formulación analítica existente, como la recomendada por el fib Bulletin 14. Los resultados obtenidos demuestran que las vigas reforzadas ofrecen un comportamiento significativamente superior al de las vigas sin refuerzo, tanto en el valor de las cargas últimas como en la ductilidad de las piezas. Además se puede concluir que en todos los casos estudiados la rigidez prevista hasta la fisuración de las vigas es superior a la obtenida experimentalmente. Además las vigas reforzadas a cortante con tejido de fibra de carbono poseen una ductilidad superior a la de las vigas sin reforzar
Comportamiento de vigas de hormigón reforzadas a cortante con tejidos de fibras de carbono o basalto
Resumo:
El objetivo principal ha sido estudiar el comportamiento de vigas de hormigón reforzadas a cortante con tejidos de fibra de carbono o basalto pegados con resinas epoxi. Se han planteado objetivos parciales como el análisis de la fisuración y de los movimientos en las vigas y la comparación del comportamiento mecánico de los sistemas de refuerzo estudiados. La metodología empleada ha sido experimental, realizándose vigas de hormigón en masa reforzadas inferiormente con tejido de fibra de carbono. Las vigas se han reforzado a cortante con tejidos de fibra de carbono o basalto. Se han comparado los resultados experimentales con los teóricos, obtenidos mediante la formulación analítica existente. Los resultados demuestran que las vigas reforzadas ofrecen un comportamiento significativamente superior al de las vigas sin refuerzo, tanto en el valor de las cargas últimas como en la ductilidad de las piezas. Además la rigidez prevista hasta fisuración es superior a la obtenida experimentalmente. Los resultados obtenidos nos permiten concluir que de la formulación aditiva propuesta por el Fib Bulletin 14 no se obtienen buenos resultados y que la formulación existente en diversas normativas vigentes para el cálculo de la resistencia a cortante del hormigón resulta conservadora.
Resumo:
Tanto en estructuras de edificación como de obra civil cada día resulta más frecuente la necesidad de su refuerzo, bien por problemas asociados a patologías o por el aumento de las cargas asociado generalmente a un cambio de uso. El objetivo principal de este trabajo ha sido estudiar el comportamiento de vigas de hormigón, reforzadas a cortante con tejidos de fibra de carbono o basalto pegados con resinas epoxi. Para conseguir este objetivo se han planteado objetivos parciales como el análisis de la fisuración y de los movimientos en las vigas reforzadas con polímeros reforzados con fibras (FRP) y la comparación del comportamiento mecánico de los sistemas de refuerzo estudiados.
Resumo:
Este trabajo presenta los resultados de la investigación llevada a cabo por los autores sobre el comportamiento de hormigón de 80 MPa de resistencia característica a compresión reforzado con diferentes cuantías de fibras de acero de alto contenido en carbono sometido al impacto de proyectiles de distintos calibres, determinando el espesor de muros de este tipo de hormigón que sería preciso disponer para impedir su perforación por dichos proyectiles, así como los valores máximos de penetración, para que en el caso de no producirse perforación y sólo penetración, no se genera cráter, “scabbing”, en el trasdós de los mismos. Previamente a los ensayos balísticos fue preciso diseñar los hormigones para que, presentaran determinadas características mecánicas, especialmente las relacionadas con la ductilidad, dado que estos hormigones especiales deben absorber la elevada energía que le transmiten los proyectiles y las ondas de choque que los acompañan.
Resumo:
La tierra es un material utilizado desde hace muchos años y adaptado adecuadamente a las exigencias y necesidades de la sociedad actual, presenta interesantes aplicaciones desde el punto de vista del diseño y construcción de hoy en día. Tras ser parcialmente olvidada durante estos últimos dos siglos, siendo más acusado este olvido en los países industrializados, la tierra está resurgiendo con fuerza en su uso como material de construcción debido esencialmente a dos factores: la reciente preocupación medioambiental y la crisis económica existente. Es incuestionable, pues a la vista de todos queda, que el patrimonio legado por este material pobre, como algunos lo califican, es cuanto menos extenso, pero incluso así junto con los prejuicios iniciales, las limitaciones reales de la tierra como material, reducen notablemente los usos y empleos de ésta en la actualidad. A pesar de esta realidad, es cierto y se podría decir que tiene como origen la crisis del petróleo de 1973, el número de construcciones llevadas a cabo con este material y la cantidad de construcciones existentes levantadas con barro y rehabilitadas de manera tradicional, se han visto incrementadas paulatinamente en estas dos últimas décadas, recuperándose técnicas que habían quedado en desuso. Conocer de manera más profunda las ventajas y limitaciones que la tierra ofrece ha suscitado un gran interés entre algunos sectores de investigación, lo que ha conducido a dar un paso más en la innovación de este material y mejorar así, sus características de resistencia, de comportamiento frente al agua… En el trabajo presente se pretende estudiar el comportamiento de morteros de barro estabilizados con fibras naturales tales como la paja, el esparto o el sisal, para su uso como revestimientos sobre soportes de tierra.
Resumo:
En este trabajo se estudiará como el uso de Fibras en el Hormigón aumenta la Tenacidad, y por tanto otras propiedades de los hormigones, permitiendo soportar en algunos casos mayores esfuerzos antes de llegar a su rotura. El objetivo principal es profundizar en el estudio de las fibras como refuerzo en el Hormigón y de esta manera fijar los conceptos que lo caracterizan para ser capaces de definir y justificar actualmente su uso en el sector de la construcción. Con la misma finalidad se realizará una comparativa entre un Hormigón reforzado con Fibras de Acero y un Hormigón reforzado con Fibras de Polipropileno, analizando las variantes que presentan en cuanto a su Tenacidad. El conocer el comportamiento del Hormigón reforzado con cada fibra, nos permite definir las aplicaciones en las cuales se recomendaría utilizar cada una de ellas. Este Trabajo Fin de Master pretende poder predecir qué tipo de tenacidad tendrá el hormigón en función de los dos tipos de fibras de refuerzos propuestas y definir claramente la mejor aplicación que puede tener en la obra. Cabe mencionar que los modelos de Hormigón propuestos a lo largo del trabajo hacen referencia a la normativa descrita en la EHE para Hormigones reforzados con fibras. Para fibras de Acero como refuerzo en el hormigón, se consultará la UNE 83.500-1:1989 y la UNE 83512-1:2005, para fibras de polipropileno la UNE 83.500-2:1989 y la UNE 83512-2:2005, y para el índice de tenacidad y resistencia a primera fisura consultaremos la UNE 83510:2004. Como último alcance se intenta realizar un trabajo que sirva de consulta y orientación al lector interesado en el manejo y funcionalidad de este tipo de hormigones, de tal manera que a lo largo del escrito se mencionaran algunas normativas, procesos y ensayos referentes a los hormigones reforzados con fibras.
Resumo:
En los últimos años es notable la proliferación de trabajos y estudios que tratan sobre las características del hormigón reforzado con fibras, sin embargo su incorporación en el proyecto no está del todo claro, por lo que el presente trabajo se enfocará en describir las fibras y las principales características que estas modifican en el comportamiento del hormigón, tomando en consideración la Normativa EHE-08 y el Código Boliviano del Hormigón (CBH-87).También, trata de implementar el hormigón reforzado con fibras en la elaboración del proyecto, teniendo en cuenta la incidencia de las fibras en las diferentes etapas del mismo. Se compara la influencia del hormigón reforzado con fibras en las diferentes etapas de la elaboración del proyecto en España con la de un proyecto elaborado en Bolivia. Por último, se describen los aspectos a considerar en el control de calidad del hormigón reforzado con fibras a incluir en el proyecto, para una correcta utilización del mismo.
Resumo:
El mantenimiento, la reparación y refuerzo de estructuras se ha convertido ahora más que nunca en una realidad. Dichos trabajos requieren un conocimiento de las técnicas y de los productos para evitar que vuelvan a aparecer problemas en un futuro. En este trabajo se pretende analizar el comportamiento de elementos estructurales reforzados con hormigones con fibras y/o solo fibras, comparando y analizando el comportamiento de cada aplicación. Se han realizado pruebas de laboratorio para estudiar y describir el refuerzo con fibra de carbono en elementos estructurales. También se compara el comportamiento de las diferentes fibras utilizadas en el hormigón como refuerzo.
Resumo:
La realización de obras en las que se emplean materiales no tradicionales lleva asociada una complejidad estructural y constructiva. Con la comprobación in situ mediante la realización de un prototipo, se podrá poner a punto los equipos materiales y personales, los procedimientos de definición y ejecución, modelos de cálculos utilizados, etc. Con este objetivo se realizó un prototipo de una bóveda representativa a escala real que permitiera: seleccionar la dosificación de hormigón, entre las estudiadas previamente; optimizar el proceso de colocación, ajustando la localización de los puntos de hormigonado; y comprobar la adecuación de los equipos de hormigonado. Con las lecciones aprendidas de la fabricación de este prototipo se plantearon las modificaciones que se deben incorporar en obra. La experiencia adquirida llevó a modificar las fases de hormigonado y permitió adaptar los materiales al elemento construido.
Resumo:
Esta Tesis trata sobre el diseño y desarrollo de un material constructivo de fachada (tras ventilada), empleando plástico reciclado (granza de caucho, de neumáticos fuera de uso) para su elaboración. El uso de materiales reciclados para la elaboración de nuevos materiales constructivos, es a día de hoy, un valor agregado que contribuye tanto a la disminución de desechos tóxicos, como a la fabricación de productos de alta calidad. La investigación partió de la necesidad de comprender qué es un plástico, cómo son producidos, cuáles son los factores que permitían su reciclaje y qué propiedades podrían ser aprovechadas para desarrollar un nuevo material constructivo. En el estado del arte, fueron analizados los aspectos del plástico relacionados a su composición, propiedades, tipologías, producción, consumo, legislación europea y española, reciclaje y valorización energética. Para analizar más profundamente los materiales desarrollados a partir de plásticos reciclados, desde textiles hasta elementos constructivos. Con el conocimiento adquirido mediante este análisis previo, se diseñó una metodología de experimentación, utilizando caucho reciclado y derivados del yeso como agregados, en una matriz de resinas poliméricas reforzada con fibras naturales y sintéticas. Los resultados obtenidos en los ensayos físicos y térmicos, con los elementos producidos, demostraron que el material tiene una excelente resistencia a tensión así como una baja conductividad térmica. Esta investigación, servirá como precedente para el desarrollo de nuevos materiales y sistemas constructivos, utilizando agregados de plástico reciclado, en los procesos de fabricación. Ya que ha comprobado el enorme potencial que ofrecen, creando nuevos materiales, y contribuyendo a reducir la contaminación medio ambiental. "La mayor recompensa de nuestro trabajo no es lo que nos pagan por él, sino aquello en lo que nos convierte". John Ruskin Material compuesto (Composite) de caucho reciclado, fibras y resinas poliméricas. ABSTRACT This thesis deals with the design and development of a new facade construction material using recycled plastic (rubber pellets from used tires) for processing. The use of recycled materials for the development of new building materials, today is an added value which contributes both to the reduction of toxic waste, as well as the processing of products of good quality. The research derives from the need to understand what a plastic is, how they are produced, what the factors that allowed recycling are and what properties can be exploited to develop a new building material. In the prior art, were analyzed plastic aspects related to its composition, properties, typologies, production, consumption, European and Spanish legislation, recycling and energy recovery. To further analyze the materials developed from recycled plastics, from textiles to construction elements. With the knowledge gained from this previous analysis, we designed an experimental approach using recycled rubber and plaster derivatives as aggregates in a polymeric resin matrix reinforced with natural and synthetic fibers. The results obtained in physical and thermal testing, with the elements produced, showed that the material has excellent tensile strength and a low thermal conductivity. This research will serve as a precedent for the development of new materials and building systems, using recycled plastic aggregates in the manufacturing processes. Since it was found the enormous potential, creating new materials, and helping reduce environmental pollution. "The greatest reward of our work is not what we get paid for it, but what they make us."
Resumo:
En la presente investigación se buscó estudiar el efecto de la adición de fibras metálicas como refuerzo en hormigones de alta resistencia, y en especial su comportamiento frente al impacto de proyectiles. Se efectuó el estudio sobre un hormigón de alta resistencia (HAR), analizando los aspectos mecánicos, durabilidad y trabajabilidad para su colocación en obra. Las pruebas de laboratorio se llevaron a cabo en el Laboratorio de Materiales de Construcción de la Escuela Técnica Superior de Caminos Canales y Puertos de la UPM y los ensayos balísticos en la galería de tiro cubierta del Polígono de Experiencia de Carabanchel, adscrito a la Dirección General de Infraestructura del Ministerio de la Defensa. La caracterización del HAR empleado en el estudio se centró en los aspectos de resistencias mecánicas a compresión, tracción, flexotracción, tenacidad a flexotracción, punzonamiento, retracción, fluencia, temperatura interna y resistencia al impacto de proyectiles, siempre buscando de manera primordial analizar el efecto de la adición de fibras en el hormigón de alta resistencia. El programa de ensayos balísticos comprendió la fabricación de 47 placas de hormigón de diferentes espesores, desde 5 a 40 cm., 26 de dichas placas eran de HAR con una adición de fibras metálicas de 80 kg/m3, 11 de ellas eran de HAR sin fibras y 10 de un hormigón de resistencia convencional con y sin fibras; sobre dichas placas se efectuaron diversos impactos con proyectiles de los cuatro calibres siguientes: 7.62 AP, 12.70 M8, 20 mm APDS y 25 mm APDS. Las pruebas mostraron que el HAR presenta una mayor resistencia a los impactos de proyectiles, aunque sin la adición de fibras su fragilidad es un serio inconveniente para su utilización como barrera protectora, la adición de fibras reduce considerablemente la fragmentación en la cara posterior “scabbing” y en menor medida en la cara anterior “spalling”. También se incrementa la capacidad del hormigón a la resistencia de múltiples impactos. Se efectuó un estudio de las diferentes formulas y modelos, en especial el modelo desarrollado por Moreno [60], que se vienen utilizando para el diseño de barreras protectoras de hormigón contra impacto de proyectiles, analizando su viabilidad en el caso del hormigón de alta resistencia, hormigón para el cual no fueron desarrolladas y para el que no existen bases de cálculo específicas. In this research we have tried to study the effect of adding metallic fibres as a means of reinforcing high strength concrete, and especially its behaviour when impacted upon by projectiles. The study was carried out using high strength concrete (HSC), analysing its mechanical facets, durability and malleability when used in construction. The laboratory tests took place in the Laboratorio de Materiales de Construcción of the Escuela Técnica Superior de Caminos Canales y Puertos of the Universidad Politécnica de Madrid, and the ballistic tests were carried out in the covered shooting gallery of the Polígono de Experiencias in Carabanchel (Madrid), belongs to the Departamento de Infraestructura of the Ministerio de Defensa. The aspects of the HSC studied are its mechanical strength to compression, traction, flexotraction, resilience to flexo-traction, shear strength, creep, shrinkage, internal temperature and strength to the impact of projectiles, always looking to analyse the effect of adding fibres to HSC. The ballistic testing process required the construction of 47 concrete plates of different thicknesses, from 5 to 40 cm, 26 made which HSC containing of 80 kg/m3 metallic fibres of, 11 made of HSC without fibres, and 10 made with concrete of normal strength with and without fibres. These plates were subjected to a variety of impacts by four projectile, 7.62 AP, 12.70 M8, 20 mm APDS and 25 mm APDS. The results showed that HSC has a greater resistance to the impact of projectiles, although without the addition of fibres, its fragility makes it much less suitable for use as a protective barrier. The addition of fibres reduces considerably frontal fragmentation, known as “scabbing”, and to a lesser extent causes fragmentation of the reverse side, known as “spalling”. In addition, the concrete’s capacity to resist multiple impacts is improved by its letter ductility. A study was carried out on the various formulae and models used to design protective concrete barriers impacted on by projectiles, analysing their viability in the case of HSC for which they were not developed and for which no specific calculations exist.