5 resultados para Federal aid to recreation
em Universidad Politécnica de Madrid
Resumo:
El objetivo de esta tesis es el desarrollo de un sistema completo de navegación, aprendizaje y planificación para un robot móvil. Dentro de los innumerables problemas que este gran objetivo plantea, hemos dedicado especial atención al problema del conocimiento autónomo del mundo. Nuestra mayor preocupación ha sido la de establecer mecanismos que permitan, a partir de información sensorial cruda, el desarrollo incremental de un modelo topológico del entorno en el que se mueve el robot. Estos mecanismos se apoyan invariablemente en un nuevo concepto propuesto en esta tesis: el gradiente sensorial. El gradiente sensorial es un dispositivo matemático que funciona como un detector de sucesos interesantes para el sistema. Una vez detectado uno de estos sucesos, el robot puede identificar su situación en un mapa topológico y actuar en consecuencia. Hemos denominado a estas situaciones especiales lugares sensorialmente relevantes, ya que (a) captan la atención del sistema y (b) pueden ser identificadas utilizando la información sensorial. Para explotar convenientemente los modelos construidos, hemos desarrollado un algoritmo capaz de elaborar planes internalizados, estableciendo una red de sugerencias en los lugares sensorialmente relevantes, de modo que el robot encuentra en estos puntos una dirección recomendada de navegación. Finalmente, hemos implementado un sistema de navegación robusto con habilidades para interpretar y adecuar los planes internalizados a las circunstancias concretas del momento. Nuestro sistema de navegación está basado en la teoría de campos de potencial artificial, a la que hemos incorporado la posibilidad de añadir cargas ficticias como ayuda a la evitación de mínimos locales. Como aportación adicional de esta tesis al campo genérico de la ciencia cognitiva, todos estos elementos se integran en una arquitectura centrada en la memoria, lo que pretende resaltar la importancia de ésta en los procesos cognitivos de los seres vivos y aporta un giro conceptual al punto de vista tradicional, centrado en los procesos. The general objective of this thesis is the development of a global navigation system endowed with planning and learning features for a mobile robot. Within this general objective we have devoted a special effort to the autonomous learning problem. Our main concern has been to establish the necessary mechanisms for the incremental development of a topological model of the robot’s environment using the sensory information. These mechanisms are based on a new concept proposed in the thesis: the sensory gradient. The sensory gradient is a mathematical device which works like a detector of “interesting” environment’s events. Once a particular event has been detected the robot can identify its situation in the topological map and to react accordingly. We have called these special situations relevant sensory places because (a) they capture the system’s attention and (b) they can be identified using the sensory information. To conveniently exploit the built-in models we have developed an algorithm able to make internalized plans, establishing a suggestion network in the sensory relevant places in such way that the robot can find at those places a recommended navigation direction. It has been also developed a robust navigation system able to navigate by means of interpreting and adapting the internalized plans to the concrete circumstances at each instant, i.e. a reactive navigation system. This reactive system is based on the artificial potential field approach with the additional feature introduced in the thesis of what we call fictitious charges as an aid to avoid local minima. As a general contribution of the thesis to the cognitive science field all the above described elements are integrated in a memory-based architecture, emphasizing the important role played by the memory in the cognitive processes of living beings and giving a conceptual turn in the usual process-based approach.
Resumo:
The production of minimally processed vegetables and fruits is an emergent sector, however these processes reduce the useful life of the products. Main preservation techniques such cold storage and modified atmosphere are limited. New treatments are being applied (O3 , UV‐C radiation, biodegradable films…etc.). The sector precise of cheap and fast techniques to evaluate the general quality and the security of the processed products, that constitute a tool of aid to the decision in the implementation of new procedures of packaging and/or treatments. Objectives: To explore hyperspectral imaging for monitoring the evolution of minimally processed leafy vegetables during shelf‐life . To identify and classify deterioration rates of the leaves through Multivariate analysis techniques (PLS‐DA)
Resumo:
Plant diseases represent a major economic and environmental problem in agriculture and forestry. Upon infection, a plant develops symptoms that affect different parts of the plant causing a significant agronomic impact. As many such diseases spread in time over the whole crop, a system for early disease detection can aid to mitigate the losses produced by the plant diseases and can further prevent their spread [1]. In recent years, several mathematical algorithms of search have been proposed [2,3] that could be used as a non-invasive, fast, reliable and cost-effective methods to localize in space infectious focus by detecting changes in the profile of volatile organic compounds. Tracking scents and locating odor sources is a major challenge in robotics, on one hand because odour plumes consists of non-uniform intermittent odour patches dispersed by the wind and on the other hand because of the lack of precise and reliable odour sensors. Notwithstanding, we have develop a simple robotic platform to study the robustness and effectiveness of different search algorithms [4], with respect to specific problems to be found in their further application in agriculture, namely errors committed in the motion and sensing and to the existence of spatial constraints due to land topology or the presence of obstacles.
Resumo:
Esta tesis se ha desarrollado en el contexto del proyecto Cajal Blue Brain, una iniciativa europea dedicada al estudio del cerebro. Uno de los objetivos de esta iniciativa es desarrollar nuevos métodos y nuevas tecnologías que simplifiquen el análisis de datos en el campo neurocientífico. El presente trabajo se ha centrado en diseñar herramientas que combinen información proveniente de distintos canales sensoriales con el fin de acelerar la interacción y análisis de imágenes neurocientíficas. En concreto se estudiará la posibilidad de combinar información visual con información háptica. Las espinas dendríticas son pequeñas protuberancias que recubren la superficie dendrítica de muchas neuronas del cerebro. A día de hoy, se cree que tienen un papel clave en la transmisión de señales neuronales. Motivo por el cual, el interés por parte de la comunidad científica por estas estructuras ha ido en aumento a medida que las técnicas de adquisición de imágenes mejoraban hasta alcanzar una calidad suficiente para analizar dichas estructuras. A menudo, los neurocientíficos utilizan técnicas de microscopía con luz para obtener los datos que les permitan analizar estructuras neuronales tales como neuronas, dendritas y espinas dendríticas. A pesar de que estas técnicas ofrezcan ciertas ventajas frente a su equivalente electrónico, las técnicas basadas en luz permiten una menor resolución. En particular, estructuras pequeñas como las espinas dendríticas pueden capturarse de forma incorrecta en las imágenes obtenidas, impidiendo su análisis. En este trabajo, se presenta una nueva técnica, que permite editar imágenes volumétricas, mediante un dispositivo háptico, con el fin de reconstruir de los cuellos de las espinas dendríticas. Con este objetivo, en un primer momento se desarrolló un algoritmo que proporciona retroalimentación háptica en datos volumétricos, completando la información que provine del canal visual. Dicho algoritmo de renderizado háptico permite a los usuarios tocar y percibir una isosuperficie en el volumen de datos. El algoritmo asegura un renderizado robusto y eficiente. Se utiliza un método basado en las técnicas de “marching tetrahedra” para la extracción local de una isosuperficie continua, lineal y definida por intervalos. La robustez deriva tanto de una etapa de detección de colisiones continua de la isosuperficie extraída, como del uso de técnicas eficientes de renderizado basadas en un proxy puntual. El método de “marching tetrahedra” propuesto garantiza que la topología de la isosuperficie extraída coincida con la topología de una isosuperficie equivalente determinada utilizando una interpolación trilineal. Además, con el objetivo de mejorar la coherencia entre la información háptica y la información visual, el algoritmo de renderizado háptico calcula un segundo proxy en la isosuperficie pintada en la pantalla. En este trabajo se demuestra experimentalmente las mejoras en, primero, la etapa de extracción de isosuperficie, segundo, la robustez a la hora de mantener el proxy en la isosuperficie deseada y finalmente la eficiencia del algoritmo. En segundo lugar, a partir del algoritmo de renderizado háptico propuesto, se desarrolló un procedimiento, en cuatro etapas, para la reconstrucción de espinas dendríticas. Este procedimiento, se puede integrar en los cauces de segmentación automática y semiautomática existentes como una etapa de pre-proceso previa. El procedimiento está diseñando para que tanto la navegación como el proceso de edición en sí mismo estén controlados utilizando un dispositivo háptico. Se han diseñado dos experimentos para evaluar esta técnica. El primero evalúa la aportación de la retroalimentación háptica y el segundo se centra en evaluar la idoneidad del uso de un háptico como dispositivo de entrada. En ambos casos, los resultados demuestran que nuestro procedimiento mejora la precisión de la reconstrucción. En este trabajo se describen también dos casos de uso de nuestro procedimiento en el ámbito de la neurociencia: el primero aplicado a neuronas situadas en la corteza cerebral humana y el segundo aplicado a espinas dendríticas situadas a lo largo de neuronas piramidales de la corteza del cerebro de una rata. Por último, presentamos el programa, Neuro Haptic Editor, desarrollado a lo largo de esta tesis junto con los diferentes algoritmos ya mencionados. ABSTRACT This thesis took place within the Cajal Blue Brain project, a European initiative dedicated to the study of the brain. One of the main goals of this project is the development of new methods and technologies simplifying data analysis in neuroscience. This thesis focused on the development of tools combining information originating from distinct sensory channels with the aim of accelerating both the interaction with neuroscience images and their analysis. In concrete terms, the objective is to study the possibility of combining visual information with haptic information. Dendritic spines are thin protrusions that cover the dendritic surface of numerous neurons in the brain and whose function seems to play a key role in neural circuits. The interest of the neuroscience community toward those structures kept increasing as and when acquisition methods improved, eventually to the point that the produced datasets enabled their analysis. Quite often, neuroscientists use light microscopy techniques to produce the dataset that will allow them to analyse neuronal structures such as neurons, dendrites and dendritic spines. While offering some advantages compared to their electronic counterpart, light microscopy techniques achieve lower resolutions. Particularly, small structures such as dendritic spines might suffer from a very low level of fluorescence in the final dataset, preventing further analysis. This thesis introduces a new technique enabling the edition of volumetric datasets in order to recreate dendritic spine necks using a haptic device. In order to fulfil this objective, we first presented an algorithm to provide haptic feedback directly from volumetric datasets, as an aid to regular visualization. The haptic rendering algorithm lets users perceive isosurfaces in volumetric datasets, and it relies on several design features that ensure a robust and efficient rendering. A marching tetrahedra approach enables the dynamic extraction of a piecewise linear continuous isosurface. Robustness is derived using a Continuous Collision Detection step coupled with acknowledged proxy-based rendering methods over the extracted isosurface. The introduced marching tetrahedra approach guarantees that the extracted isosurface will match the topology of an equivalent isosurface computed using trilinear interpolation. The proposed haptic rendering algorithm improves the coherence between haptic and visual cues computing a second proxy on the isosurface displayed on screen. Three experiments demonstrate the improvements on the isosurface extraction stage as well as the robustness and the efficiency of the complete algorithm. We then introduce our four-steps procedure for the complete reconstruction of dendritic spines. Based on our haptic rendering algorithm, this procedure is intended to work as an image processing stage before the automatic segmentation step giving the final representation of the dendritic spines. The procedure is designed to allow both the navigation and the volume image editing to be carried out using a haptic device. We evaluated our procedure through two experiments. The first experiment concerns the benefits of the force feedback and the second checks the suitability of the use of a haptic device as input. In both cases, the results shows that the procedure improves the editing accuracy. We also report two concrete cases where our procedure was employed in the neuroscience field, the first one concerning dendritic spines in the human cortex, the second one referring to an ongoing experiment studying dendritic spines along dendrites of mouse cortical pyramidal neurons. Finally, we present the software program, Neuro Haptic Editor, that was built along the development of the different algorithms implemented during this thesis, and used by neuroscientists to use our procedure.
Resumo:
Este Proyecto Fin de Carrera tiene como principal objetivo analizar la evolución de los Sistemas de Comunicación por Satélite, así como dar a conocer al lector la tecnología EGNOS y su aplicabilidad como ayuda a la navegación Aeronáutica. Este trabajo comenzará con una primera parte, la cual está dedicada a conocer qué es un satélite y como ha sido su evolución a lo largo de la historia, desde la aparición del primer satélite hasta nuestros días, así como mostrar las partes que lo componen y su proceso de lanzamiento. Todo este capítulo, sirve de base para poder entender mejor las siguientes partes del proyecto. En la segunda parte de esta memoria, se entra más en detalle y se desarrollan los temas principales de este documento. Podríamos decir que este segundo capítulo se divide a su vez en dos subpartes claramente diferenciadas: En la primera, se analiza la estructura de un sistema de comunicaciones por satélite, los diferentes tipos de satélites según su órbita o según su finalidad, viendo unos claros ejemplos de cada uno de ellos, así como las bandas de frecuencias en las que trabajan. Para concluir esta sección se habla de los diferentes tipos de servicios que ofrecen las comunicaciones por satélite para centrarnos más adelante en los servicios aeronáuticos. En la segunda parte, se habla de la aplicación de la tecnología EGNOS como ayuda a la navegación aeronáutica. Para ello, primero se explican los diferentes sistemas de navegación que usan las aeronaves, entre los que se encuentran los sistemas VOR, DME, ADF y TACAN, y después se introduce al usuario a la tecnología EGNOS, viendo su arquitectura y explicando su funcionamiento. Como ejemplo de aplicabilidad de esta tecnología se explica el novedoso sistema SLS que llevan las aeronaves. Toda esta segunda parte constituye el cuerpo del proyecto y el punto más importante de esta memoria. Para finalizar, en la última parte del Proyecto Fin de Carrera, se habla del presente y futuro del sistema EGNOS evaluando sus principales ventajas y las conclusiones que se han sacado al hacer esta memoria. ABSTRACT. This thesis has as main objective to analyze the evolution of satellite communication systems, as well as to inform the reader about EGNOS technology and its applicability as an aid to aeronautical navigation. This document will begin with a first part, which is dedicated to know what a satellite is and how has its evolution been throughout history, from the appearance of the first satellite until nowadays, as well as showing the parts that it is composed of and different launch processes. This chapter serves as a base to a better understanding of these parts of the project. In the second part of this report, more detail is introduced and it is developed the main themes of this document. We could say that this second chapter is divided in two clearly differentiated subparts: The first, analyzes the structure of a communications system by satellite, different types of satellites according to its orbit or according to their purpose, seeing some clear examples of each of them, as well as the frequency bands in which they work. To conclude, this section refers to different types of services offered by satellite communications to focus later in the aeronautical services. In the second part, application of EGNOS technology is referred as an aid to the aeronautical navigation. To do this, first they are explained the different navigation systems that the aircraft uses, which include VOR, DME, ADF and TACAN systems, and then EGNOS technology is introduced to the user, seeing its architecture and explaining its operation. As an example of applicability of this technology, the new system SLS carried by the aircraft is explained. Throughout this second part it is constituted the body of the project and the most important point of this report. Finally, in the last part of the thesis, the present and future of the EGNOS system are analyzed evaluating the main advantages and conclusions that have been obtained to make this memory.