5 resultados para Features extraction
em Universidad Politécnica de Madrid
Resumo:
Mealiness is a negative attribute of sensory texture that combines the sensation of a disaggregated tissue with the sensation of lack of juiciness. Since January 1996, a wide EC Project entitled : "Mealiness in fruits. Consumers perception and means for detection'" is being carried out. Within it, three sensory panels have been trained at : the Institute of Food Research (IFR, United Kingdom), the Instituto de Agroquímica y Tecnología de los Alimentos (IATA, Spain) and the Institut voor Agrotechnologisch Onderzoek (ATO-DLO, Netherlands) to assess mealiness in apples. In all three cases, mealiness has been described as a multidimensional sensory descriptor capable of gathering the loss of consistency (of crispness and of hardness) and of juiciness. Also within the EC Project several instrumental procedures have been tested for mealiness assessment. In this sense the Physical Properties Laboratory (ETS1A-UPM) has focused its aims in a first stage on performing instrumental tests for assessing some textural descriptors as crispiness, hardness and juiciness. The results obtained within these tests have shown to correlate well with the sensory measurements (Barreiro et Ruiz-Altisent, 1997) in apples, but also have succeed when trying to generate several texture degradation levels on peaches from which mealiness appears to be the last stage (Ortiz et al. 1997).
Resumo:
Mealiness is a negative attribute of sensory texture, characterised by the lack of juiciness decrease in the total amount of of water content of tissues. Peach mealy textures are known as \ and leatheriness. Besides the lack of juiciness and flavour, that characterises mealy fruits, in associated with internal browning near the stone and an incapacity of ripening although there i ripe appearance. It is considered as a physiological disorder that appears in stone fruits probably < unbalanced pectolitic enzyme activity during storage. Since January 1996, a wide EC Project entitled: "Mealiness in fruits. Consumer perception and i detection" is being carried out. Within it, the Physical Properties Laboratory (ETSIA-UPM) working to develop instrumental procedures to detect mealiness in different types of fruits (s contributions by Barreiro to AgEng). The results obtained have shown to correlate well with \ measurements in apples (Barreiro et al), also we have succeeded in identifying individual mealy j the basis of instrumental measurement in peaches. The definition of these texture categories will be used in further studies as a base for new individual classification.
Resumo:
The focus of this chapter is to study feature extraction and pattern classification methods from two medical areas, Stabilometry and Electroencephalography (EEG). Stabilometry is the branch of medicine responsible for examining balance in human beings. Balance and dizziness disorders are probably two of the most common illnesses that physicians have to deal with. In Stabilometry, the key nuggets of information in a time series signal are concentrated within definite time periods are known as events. In this chapter, two feature extraction schemes have been developed to identify and characterise the events in Stabilometry and EEG signals. Based on these extracted features, an Adaptive Fuzzy Inference Neural network has been applied for classification of Stabilometry and EEG signals.
Resumo:
MFCC coefficients extracted from the power spectral density of speech as a whole, seems to have become the de facto standard in the area of speaker recognition, as demonstrated by its use in almost all systems submitted to the 2013 Speaker Recognition Evaluation (SRE) in Mobile Environment [1], thus relegating to background this component of the recognition systems. However, in this article we will show that selecting the adequate speaker characterization system is as important as the selection of the classifier. To accomplish this we will compare the recognition rates achieved by different recognition systems that relies on the same classifier (GMM-UBM) but connected with different feature extraction systems (based on both classical and biometric parameters). As a result we will show that a gender dependent biometric parameterization with a simple recognition system based on GMM- UBM paradigm provides very competitive or even better recognition rates when compared to more complex classification systems based on classical features
Resumo:
Durante el proceso de producción de voz, los factores anatómicos, fisiológicos o psicosociales del individuo modifican los órganos resonadores, imprimiendo en la voz características particulares. Los sistemas ASR tratan de encontrar los matices característicos de una voz y asociarlos a un individuo o grupo. La edad y sexo de un hablante son factores intrínsecos que están presentes en la voz. Este trabajo intenta diferenciar esas características, aislarlas y usarlas para detectar el género y la edad de un hablante. Para dicho fin, se ha realizado el estudio y análisis de las características basadas en el pulso glótico y el tracto vocal, evitando usar técnicas clásicas (como pitch y sus derivados) debido a las restricciones propias de dichas técnicas. Los resultados finales de nuestro estudio alcanzan casi un 100% en reconocimiento de género mientras en la tarea de reconocimiento de edad el reconocimiento se encuentra alrededor del 80%. Parece ser que la voz queda afectada por el género del hablante y las hormonas, aunque no se aprecie en la audición. ABSTRACT Particular elements of the voice are printed during the speech production process and are related to anatomical and physiological factors of the phonatory system or psychosocial factors acquired by the speaker. ASR systems attempt to find those peculiar nuances of a voice and associate them to an individual or a group. Age and gender are inherent factors to the speaker which may be represented in voice. This work attempts to differentiate those characteristics, isolate them and use them to detect speaker’s gender and age. Features based on glottal pulse and vocal tract are studied and analyzed in order to achieve good results in both tasks. Classical methodologies (such as pitch and derivates) are avoided since the requirements of those techniques may be too restrictive. The final scores achieve almost 100% in gender recognition whereas in age recognition those scores are around 80%. Factors related to the gender and hormones seem to affect the voice although they are not audible.