8 resultados para Fatty acid production
em Universidad Politécnica de Madrid
Resumo:
Relatively high amounts of fats or oils (mayor que 40-50 g/kg diet) are frequently used in animal nutrition. Vegetables oils are richer in polyunsaturated fatty acids than animal fats. Most of the works studying the effect of different dietary fat sources are focused either on the existing differences on fat digestibility depending on their fatty acid composition (Wiseman et al., 1991) or on their effect on the carcass fat fatty acid profile (Sanz et al., 1999a). lnformation regarding the effect of dietary fat saturation on fat utilization and deposition it is more limited. lt is generally assumed that, apart from differences in digestion, fatty acids of different composition are equally used for metabolic purposes.
Resumo:
The effect of a diet enriched with polyunsaturated n -3 fatty acids (PUFA) on endocrine, reproductive, and productive responses of rabbit females and the litters has been studied. Nulliparous does ( n = 125) were fed ad libitum from rearing to second weaning two diets supplemented with different fat sources: 7.5 g/kg lard for the control diet (group C; n = 63) or 15 g/kg of a commercial supplement containing a 50% ether extract and 35% of total fatty acids (FAs) as PUFA n -3 (Group P; n = 62). Dietary treatments did not affect apparent digestibility coefficients of nutrients, or reproductive variables of does including milk pro- duction, mortality and average daily gain of kits over two lactations. However, on Day 5 and 7 post-induction of ovulation, progesterone of Group P tended to increase to a greater extent than in does of Group C. Total PUFAs, n -6 and n -3 and eicosapentanoic (EPA) contents were greater in adipose tissues of does in Group P than in Group C. Docosapentaenoic acid (DPA), EPA, and docosahexaenoic acid (DHA) concentrations were greater in peri-ovarian than in scapular fat with abdominal fat being intermediate in concentration. In PUFA sup- plemented does, kit mortality at the second parturition tended to be less than in control does. Also, kits born to does of the PUFA-supplemented group weighed more and were of greater length than from does of control group. In conclusion, effectiveness of dietary intervention on reproductive and performance response is greater in the second parity, which suggests an accumulative long-term beneficial effect of n -3 FA supplementation in reproductive rabbit does
Resumo:
Se han estudiado los biomarcadores, principalmente cetonas y ácidos, preservados en el registro de 3.2 m de la Turbera de Las Conchas. Las cetonas reflejan cierta actividad bacteriana desde 94 cm hasta la base del registro, Los ácidos grasos reflejan una buena preservación de la materia orgánica, salvo en los 20 cm superiores en los que hay indicios de oxidación microbiana de alcanos .The biomarkers, mainly ketones and fally aclds, preserved In 3.2 m deep Las Conchas Mire have been studied, Kelones reflect certain bacterial activity from 94 cm to the bottom of the record. Falty aclds indlcate a good preservation of the organlc matter, wlth the exception of the uppermost 20 cm In whlch mlcroblal oxldation of alkanes are likely to occur
Resumo:
The aim of this work was to assess the effects of four doses of three commercial fibrolytic enzymes on ruminal fermentation of rice straw, maize stover and Pennisetum purpureum clon Cuba CT115 hay in batch cultures of ruminal micro-organisms from sheep. One enzyme was produced by Penicillium funiculosum (PEN) and two were from Trichoderma longibrachiatum (TL1 and TL2). Each liquid enzyme was diluted 200 (D1), 100 (D2), 50 (D3) and 10 (D4) - fold and applied to each substrate in quadruplicate over time and incubated for 120 h in rumen fluid. The D4 dose of each enzyme increased (P<0.05) the fractional rate of gas production and organic matter effective degradability for all substrates, and TL2 had similar effects when applied at D3. In 9 h incubations, PEN at D4, TL1 at all tested doses, and TL2 at D2, D3 and D4 increased (P<0.05) volatile fatty acid production and dry matter degradability for all substrates. The commercial enzymes tested were effective at increasing in vitro ruminal fermentation of low-quality forages, although effective doses varied with the enzyme.
Resumo:
Winter oats were grown according to European organic farming regulations in monoculture (oats) and in intercropping with bard vetch (BAV), bitter vetch (BIV) or both legumes (MIX) to evaluate the effects of intercropping on forage yield and nutritive value for ruminants. The experiment was carried out as a randomised complete block design with four replications, and whole forage samples were obtained at two harvest dates (June and July). For both harvest times, all intercrops increased (P < 0.05) forage yield compared with oats, but forage crude protein content was only increased (P < 0.05) for BAV and MIX. Compared with oats, intercropping with BAV increased (P < 0.05) in vitro rate of gas production and total volatile fatty acid production, indicating a higher rate and extent of rumen degradation of BAV forage. In contrast, BIV forage harvested in June had lower (P < 0.05) rate of gas production and total volatile fatty acid production than June oats, but in general no differences in the in vitro rumen fermentation were detected between oats and BIV samples harvested in July. The results indicate that forage yield and quality can be enhanced by intercropping oats with BAV; however, intercropping with BIV increased yield but decreased nutritive value of the forage.
Resumo:
Babassu and camelina oils have been transesterified with methanol by the classical homogeneous basic catalysis method with good yields. The babassu fatty acid methyl ester (FAME) has been subjected to fractional distillation at vacuum, and the low boiling point fraction has been blended with two types of fossil kerosene, a straight-run atmospheric distillation cut (hydrotreated) and a commercial Jet-A1. The camelina FAME has been blended with the fossil kerosene without previous distillation. The blends of babassu biokerosene and Jet-A1 have met some of the specifications selected for study of the ASTM D1655 standard: smoke point, density, flash point, cloud point, kinematic viscosity, oxidative stability and lower heating value. On the other hand, the blends of babassu biokerosene and atmospheric distillation cut only have met the density parameter and the oxidative stability. The blends of camelina FAME and atmospheric distillation cut have met the following specifications: density, kinematic viscosity at −20 °C, and lower heating value. With these preliminary results, it can be concluded that it would be feasible to blend babassu and camelina biokerosenes prepared in this way with commercial Jet-A1 up to 10 vol % of the former, if these blends prove to accomplish all the ASTM D1655-09 standards.
Resumo:
The objective of this study was to evaluate the effects of increasing doses [0 (control: CON), 20, 60, 180 and 540 mg/L incubation medium] of garlic oil (GO) and cinnamaldehyde (CIN) on in vitro ruminal fermentation of two diets. Batch cultures of mixed ruminal microorganisms were inoculated with ruminal fluid from four sheep fed a medium-concentrate diet (MC; 50 : 50 alfalfa hay : concentrate) or four sheep fed a high-concentrate diet (HC; 15 : 85 barley straw : concentrate). Diets MC and HC were representative of those fed to dairy and fattening ruminants, respectively. Samples of each diet were used as incubation substrates for the corresponding inoculum, and the incubation was repeated on 4 different days (four replicates per experimental treatment). There were GO × diet-type and CIN × diet-type interactions (P < 0.001–0.05) for many of the parameters determined, indicating different effects of both oils depending on the diet type. In general, effects of GO were more pronounced for MC compared with HC diet. Supplementation of GO did not affect (P > 0.05) total volatile fatty acid (VFA) production at any dose. For MC diet, GO at 60, 180 and 540 mg/L decreased (P < 0.05) molar proportion of acetate (608, 569 and 547 mmol/mol total VFA, respectively), and increased (P < 0.05) propionate proportion (233, 256 and 268 mmol/mol total VFA, respectively), compared with CON values (629 and 215 mmol/mol total VFA for acetate and propionate, respectively). A minimum dose of 180 mg of GO/L was required to produce similar modifications in acetate and propionate proportions with HC diet, but no effects (P > 0.05) on butyrate proportion were detected. Methane/VFA ratio was reduced (P < 0.05) by GO at 60, 180 and 540 mg/L for MC diet (0.23, 0.16 and 0.10 mol/mol, respectively), and by GO at 20, 60, 180 and 540 mg/L for HC diet (0.19, 0.19, 0.16 and 0.08 mol/mol, respectively), compared with CON (0.26 and 0.21 mol/mol for MC and HC diets, respectively). No effects (P = 0.16–0.85) of GO on final pH and concentrations of NH3-N and lactate were detected. For both diet types, the highest CIN dose decreased (P < 0.05) production of total VFA, gas and methane, which would indicate an inhibition of fermentation. Compared with CON, CIN at 180 mg/L increased (P < 0.05) acetate proportion for the MC (629 and 644 mmol/mol total VFA for CON and CIN, respectively) and HC (525 and 540 mmol/mol total VFA, respectively) diets, without affecting the proportions of any other VFA or total VFA production. Whereas for MC diet CIN at 60 and 180 mg/L decreased (P < 0.05) NH3-N concentrations compared with CON, only a trend (P < 0.10) was observed for CIN at 180 mg/L with the HC diet. Supplementation of CIN up to 180 mg/L did not affect (P = 0.18–0.99) lactate concentrations and production of gas and methane for any diet. The results show that effectiveness of GO and CIN to modify ruminal fermentation may depend on diet type, which would have practical implications if they are confirmed in vivo.
Resumo:
Biodiesel is currently produced from a catalytic transesterification reaction of various types of edible and non-edible oil with methanol. The use of waste animal tallow instead of edible oils opens a route to recycle this waste. This material has the advantage of lower costs but the problem of high content of free fatty acids, becoming necessary a pre-esterification reaction that increases the cost of the catalytic process. The production of biodiesel using supercritical alcohols is appropriate for materials with high acidity and water content, therefore the use of this process with animal fat is a promising alternative. Ethanol has been used because it can be produced from biomass via fermentation resulting in a complete renewable biodiesel, instead of methanol that derives from fossil feedstocks. Two different processes have been studied: first, the direct transesterification of animal fat using supercritical ethanol and second a two-step process where the first step is a hydrolysis of the animal fat and the second step is the esterification of the resulting fatty acids. The temperature, the molar ratio ethanol:fat and the time have been modified in the different reactions to study the effect in the final conversion and the degradation of the unsaturated fatty acid esters, main inconvenient of these high temperature and pressure processes.