11 resultados para Fair Compensation
em Universidad Politécnica de Madrid
Resumo:
The problem of fairly distributing the capacity of a network among a set of sessions has been widely studied. In this problem, each session connects via a single path a source and a destination, and its goal is to maximize its assigned transmission rate (i.e., its throughput). Since the links of the network have limited bandwidths, some criterion has to be defined to fairly distribute their capacity among the sessions. A popular criterion is max-min fairness that, in short, guarantees that each session i gets a rate λi such that no session s can increase λs without causing another session s' to end up with a rate λs/ <; λs. Many max-min fair algorithms have been proposed, both centralized and distributed. However, to our knowledge, all proposed distributed algorithms require control data being continuously transmitted to recompute the max-min fair rates when needed (because none of them has mechanisms to detect convergence to the max-min fair rates). In this paper we propose B-Neck, a distributed max-min fair algorithm that is also quiescent. This means that, in absence of changes (i.e., session arrivals or departures), once the max min rates have been computed, B-Neck stops generating network traffic. Quiescence is a key design concept of B-Neck, because B-Neck routers are capable of detecting and notifying changes in the convergence conditions of max-min fair rates. As far as we know, B-Neck is the first distributed max-min fair algorithm that does not require a continuous injection of control traffic to compute the rates. The correctness of B-Neck is formally proved, and extensive simulations are conducted. In them, it is shown that B-Neck converges relatively fast and behaves nicely in presence of sessions arriving and departing.
Resumo:
In this work, we present a novel method to compensate the movement in images acquired during free breathing using first-pass gadolinium enhanced, myocardial perfusion magnetic resonance imaging (MRI). First, we use independent component analysis (ICA) to identify the optimal number of independent components (ICs) that separate the breathing motion from the intensity change induced by the contrast agent. Then, synthetic images are created by recombining the ICs, but other then in previously published work (Milles et al. 2008), we omit the component related to motion, and therefore, the resulting reference image series is free of motion. Motion compensation is then achieved by using a multi-pass non-rigid image registration scheme. We tested our method on 15 distinct image series (5 patients) consisting of 58 images each and we validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration. The average correlation to the manually obtained curves before registration 0:89 0:11 was increased to 0:98 0:02
Resumo:
Images acquired during free breathing using first-pass gadolinium-enhanced myocardial perfusion magnetic resonance imaging (MRI) exhibit a quasiperiodic motion pattern that needs to be compensated for if a further automatic analysis of the perfusion is to be executed. In this work, we present a method to compensate this movement by combining independent component analysis (ICA) and image registration: First, we use ICA and a time?frequency analysis to identify the motion and separate it from the intensity change induced by the contrast agent. Then, synthetic reference images are created by recombining all the independent components but the one related to the motion. Therefore, the resulting image series does not exhibit motion and its images have intensities similar to those of their original counterparts. Motion compensation is then achieved by using a multi-pass image registration procedure. We tested our method on 39 image series acquired from 13 patients, covering the basal, mid and apical areas of the left heart ventricle and consisting of 58 perfusion images each. We validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration of 13 patient data sets (39 distinct slices). We compared linear, non-linear, and combined ICA based registration approaches and previously published motion compensation schemes. Considering run-time and accuracy, a two-step ICA based motion compensation scheme that first optimizes a translation and then for non-linear transformation performed best and achieves registration of the whole series in 32 ± 12 s on a recent workstation. The proposed scheme improves the Pearsons correlation coefficient between manually and automatically obtained time?intensity curves from .84 ± .19 before registration to .96 ± .06 after registration
Resumo:
Fiber optic sensors have some advantages in subjects related with electrical current and magnetic field measurement. In spite of the optical fiber utilization advantages we have to take into account undesirable effects, which are present in real non-ideal optical fibers. In telecommunication and sensor application fields the presence of inherent and induced birefringence is crucial. The presence of birefringence may cause an undesirable change in the polarization state. In order to compensate the linear birefringence a promising method has been chosen. This method employs orthogonal polarization conjugation in the back propagation direction of the light wave in the fiber. A study and a simulation of an experimental setup are realized with the advantage of a significant sensitivity improvement.
Resumo:
The performance of a CATR relies on the planarity of the synthesized test wave, which is generated within a bounded volume for which specifications are drawn. Millimetre-wave facilities deal with the classical limitations of this frequency band, among which two become critical in our analysis: time-extensive acquisition campaigns and impact of environmental variables. Both features become more evident when increasing the frequency of operation. The variation in atmospheric variables, such as humidity, temperature and pressure has an influence over the performance of all the elements of the facility. The instrumentation behavior is influenced both by the warming up process, and the ambience conditions that surround the equipment. On the changes of the atmosphere itself, they affect the electromagnetic wave propagation, given the physical link between the conditions of the atmosphere and its electric properties as an electromagnetic waves propagation medium
Resumo:
The growth of the Internet has increased the need for scalable congestion control mechanisms in high speed networks. In this context, we propose a rate-based explicit congestion control mechanism with which the sources are provided with the rate at which they can transmit. These rates are computed with a distributed max-min fair algorithm, SLBN. The novelty of SLBN is that it combines two interesting features not simultaneously present in existing proposals: scalability and fast convergence to the max-min fair rates, even under high session churn. SLBN is scalable because routers only maintain a constant amount of state information (only three integer variables per link) and only incur a constant amount of computation per protocol packet, independently of the number of sessions that cross the router. Additionally, SLBN does not require processing any data packet, and it converges independently of sessions' RTT. Finally, by design, the protocol is conservative when assigning rates, even in the presence of high churn, which helps preventing link overshoots in transient periods. We claim that, with all these features, our mechanism is a good candidate to be used in real deployments.
Resumo:
Esta tesis doctoral se centra principalmente en técnicas de ataque y contramedidas relacionadas con ataques de canal lateral (SCA por sus siglas en inglés), que han sido propuestas dentro del campo de investigación académica desde hace 17 años. Las investigaciones relacionadas han experimentado un notable crecimiento en las últimas décadas, mientras que los diseños enfocados en la protección sólida y eficaz contra dichos ataques aún se mantienen como un tema de investigación abierto, en el que se necesitan iniciativas más confiables para la protección de la información persona de empresa y de datos nacionales. El primer uso documentado de codificación secreta se remonta a alrededor de 1700 B.C., cuando los jeroglíficos del antiguo Egipto eran descritos en las inscripciones. La seguridad de la información siempre ha supuesto un factor clave en la transmisión de datos relacionados con inteligencia diplomática o militar. Debido a la evolución rápida de las técnicas modernas de comunicación, soluciones de cifrado se incorporaron por primera vez para garantizar la seguridad, integridad y confidencialidad de los contextos de transmisión a través de cables sin seguridad o medios inalámbricos. Debido a las restricciones de potencia de cálculo antes de la era del ordenador, la técnica de cifrado simple era un método más que suficiente para ocultar la información. Sin embargo, algunas vulnerabilidades algorítmicas pueden ser explotadas para restaurar la regla de codificación sin mucho esfuerzo. Esto ha motivado nuevas investigaciones en el área de la criptografía, con el fin de proteger el sistema de información ante sofisticados algoritmos. Con la invención de los ordenadores se ha acelerado en gran medida la implementación de criptografía segura, que ofrece resistencia eficiente encaminada a obtener mayores capacidades de computación altamente reforzadas. Igualmente, sofisticados cripto-análisis han impulsado las tecnologías de computación. Hoy en día, el mundo de la información ha estado involucrado con el campo de la criptografía, enfocada a proteger cualquier campo a través de diversas soluciones de cifrado. Estos enfoques se han fortalecido debido a la unificación optimizada de teorías matemáticas modernas y prácticas eficaces de hardware, siendo posible su implementación en varias plataformas (microprocesador, ASIC, FPGA, etc.). Las necesidades y requisitos de seguridad en la industria son las principales métricas de conducción en el diseño electrónico, con el objetivo de promover la fabricación de productos de gran alcance sin sacrificar la seguridad de los clientes. Sin embargo, una vulnerabilidad en la implementación práctica encontrada por el Prof. Paul Kocher, et al en 1996 implica que un circuito digital es inherentemente vulnerable a un ataque no convencional, lo cual fue nombrado posteriormente como ataque de canal lateral, debido a su fuente de análisis. Sin embargo, algunas críticas sobre los algoritmos criptográficos teóricamente seguros surgieron casi inmediatamente después de este descubrimiento. En este sentido, los circuitos digitales consisten típicamente en un gran número de celdas lógicas fundamentales (como MOS - Metal Oxide Semiconductor), construido sobre un sustrato de silicio durante la fabricación. La lógica de los circuitos se realiza en función de las innumerables conmutaciones de estas células. Este mecanismo provoca inevitablemente cierta emanación física especial que puede ser medida y correlacionada con el comportamiento interno del circuito. SCA se puede utilizar para revelar datos confidenciales (por ejemplo, la criptografía de claves), analizar la arquitectura lógica, el tiempo e incluso inyectar fallos malintencionados a los circuitos que se implementan en sistemas embebidos, como FPGAs, ASICs, o tarjetas inteligentes. Mediante el uso de la comparación de correlación entre la cantidad de fuga estimada y las fugas medidas de forma real, información confidencial puede ser reconstruida en mucho menos tiempo y computación. Para ser precisos, SCA básicamente cubre una amplia gama de tipos de ataques, como los análisis de consumo de energía y radiación ElectroMagnética (EM). Ambos se basan en análisis estadístico y, por lo tanto, requieren numerosas muestras. Los algoritmos de cifrado no están intrínsecamente preparados para ser resistentes ante SCA. Es por ello que se hace necesario durante la implementación de circuitos integrar medidas que permitan camuflar las fugas a través de "canales laterales". Las medidas contra SCA están evolucionando junto con el desarrollo de nuevas técnicas de ataque, así como la continua mejora de los dispositivos electrónicos. Las características físicas requieren contramedidas sobre la capa física, que generalmente se pueden clasificar en soluciones intrínsecas y extrínsecas. Contramedidas extrínsecas se ejecutan para confundir la fuente de ataque mediante la integración de ruido o mala alineación de la actividad interna. Comparativamente, las contramedidas intrínsecas están integradas en el propio algoritmo, para modificar la aplicación con el fin de minimizar las fugas medibles, o incluso hacer que dichas fugas no puedan ser medibles. Ocultación y Enmascaramiento son dos técnicas típicas incluidas en esta categoría. Concretamente, el enmascaramiento se aplica a nivel algorítmico, para alterar los datos intermedios sensibles con una máscara de manera reversible. A diferencia del enmascaramiento lineal, las operaciones no lineales que ampliamente existen en criptografías modernas son difíciles de enmascarar. Dicho método de ocultación, que ha sido verificado como una solución efectiva, comprende principalmente la codificación en doble carril, que está ideado especialmente para aplanar o eliminar la fuga dependiente de dato en potencia o en EM. En esta tesis doctoral, además de la descripción de las metodologías de ataque, se han dedicado grandes esfuerzos sobre la estructura del prototipo de la lógica propuesta, con el fin de realizar investigaciones enfocadas a la seguridad sobre contramedidas de arquitectura a nivel lógico. Una característica de SCA reside en el formato de las fuentes de fugas. Un típico ataque de canal lateral se refiere al análisis basado en la potencia, donde la capacidad fundamental del transistor MOS y otras capacidades parásitas son las fuentes esenciales de fugas. Por lo tanto, una lógica robusta resistente a SCA debe eliminar o mitigar las fugas de estas micro-unidades, como las puertas lógicas básicas, los puertos I/O y las rutas. Las herramientas EDA proporcionadas por los vendedores manipulan la lógica desde un nivel más alto, en lugar de realizarlo desde el nivel de puerta, donde las fugas de canal lateral se manifiestan. Por lo tanto, las implementaciones clásicas apenas satisfacen estas necesidades e inevitablemente atrofian el prototipo. Por todo ello, la implementación de un esquema de diseño personalizado y flexible ha de ser tomado en cuenta. En esta tesis se presenta el diseño y la implementación de una lógica innovadora para contrarrestar SCA, en la que se abordan 3 aspectos fundamentales: I. Se basa en ocultar la estrategia sobre el circuito en doble carril a nivel de puerta para obtener dinámicamente el equilibrio de las fugas en las capas inferiores; II. Esta lógica explota las características de la arquitectura de las FPGAs, para reducir al mínimo el gasto de recursos en la implementación; III. Se apoya en un conjunto de herramientas asistentes personalizadas, incorporadas al flujo genérico de diseño sobre FPGAs, con el fin de manipular los circuitos de forma automática. El kit de herramientas de diseño automático es compatible con la lógica de doble carril propuesta, para facilitar la aplicación práctica sobre la familia de FPGA del fabricante Xilinx. En este sentido, la metodología y las herramientas son flexibles para ser extendido a una amplia gama de aplicaciones en las que se desean obtener restricciones mucho más rígidas y sofisticadas a nivel de puerta o rutado. En esta tesis se realiza un gran esfuerzo para facilitar el proceso de implementación y reparación de lógica de doble carril genérica. La viabilidad de las soluciones propuestas es validada mediante la selección de algoritmos criptográficos ampliamente utilizados, y su evaluación exhaustiva en comparación con soluciones anteriores. Todas las propuestas están respaldadas eficazmente a través de ataques experimentales con el fin de validar las ventajas de seguridad del sistema. El presente trabajo de investigación tiene la intención de cerrar la brecha entre las barreras de implementación y la aplicación efectiva de lógica de doble carril. En esencia, a lo largo de esta tesis se describirá un conjunto de herramientas de implementación para FPGAs que se han desarrollado para trabajar junto con el flujo de diseño genérico de las mismas, con el fin de lograr crear de forma innovadora la lógica de doble carril. Un nuevo enfoque en el ámbito de la seguridad en el cifrado se propone para obtener personalización, automatización y flexibilidad en el prototipo de circuito de bajo nivel con granularidad fina. Las principales contribuciones del presente trabajo de investigación se resumen brevemente a continuación: Lógica de Precharge Absorbed-DPL logic: El uso de la conversión de netlist para reservar LUTs libres para ejecutar la señal de precharge y Ex en una lógica DPL. Posicionamiento entrelazado Row-crossed con pares idénticos de rutado en redes de doble carril, lo que ayuda a aumentar la resistencia frente a la medición EM selectiva y mitigar los impactos de las variaciones de proceso. Ejecución personalizada y herramientas de conversión automática para la generación de redes idénticas para la lógica de doble carril propuesta. (a) Para detectar y reparar conflictos en las conexiones; (b) Detectar y reparar las rutas asimétricas. (c) Para ser utilizado en otras lógicas donde se requiere un control estricto de las interconexiones en aplicaciones basadas en Xilinx. Plataforma CPA de pruebas personalizadas para el análisis de EM y potencia, incluyendo la construcción de dicha plataforma, el método de medición y análisis de los ataques. Análisis de tiempos para cuantificar los niveles de seguridad. División de Seguridad en la conversión parcial de un sistema de cifrado complejo para reducir los costes de la protección. Prueba de concepto de un sistema de calefacción auto-adaptativo para mitigar los impactos eléctricos debido a la variación del proceso de silicio de manera dinámica. La presente tesis doctoral se encuentra organizada tal y como se detalla a continuación: En el capítulo 1 se abordan los fundamentos de los ataques de canal lateral, que abarca desde conceptos básicos de teoría de modelos de análisis, además de la implementación de la plataforma y la ejecución de los ataques. En el capítulo 2 se incluyen las estrategias de resistencia SCA contra los ataques de potencia diferencial y de EM. Además de ello, en este capítulo se propone una lógica en doble carril compacta y segura como contribución de gran relevancia, así como también se presentará la transformación lógica basada en un diseño a nivel de puerta. Por otra parte, en el Capítulo 3 se abordan los desafíos relacionados con la implementación de lógica en doble carril genérica. Así mismo, se describirá un flujo de diseño personalizado para resolver los problemas de aplicación junto con una herramienta de desarrollo automático de aplicaciones propuesta, para mitigar las barreras de diseño y facilitar los procesos. En el capítulo 4 se describe de forma detallada la elaboración e implementación de las herramientas propuestas. Por otra parte, la verificación y validaciones de seguridad de la lógica propuesta, así como un sofisticado experimento de verificación de la seguridad del rutado, se describen en el capítulo 5. Por último, un resumen de las conclusiones de la tesis y las perspectivas como líneas futuras se incluyen en el capítulo 6. Con el fin de profundizar en el contenido de la tesis doctoral, cada capítulo se describe de forma más detallada a continuación: En el capítulo 1 se introduce plataforma de implementación hardware además las teorías básicas de ataque de canal lateral, y contiene principalmente: (a) La arquitectura genérica y las características de la FPGA a utilizar, en particular la Xilinx Virtex-5; (b) El algoritmo de cifrado seleccionado (un módulo comercial Advanced Encryption Standard (AES)); (c) Los elementos esenciales de los métodos de canal lateral, que permiten revelar las fugas de disipación correlacionadas con los comportamientos internos; y el método para recuperar esta relación entre las fluctuaciones físicas en los rastros de canal lateral y los datos internos procesados; (d) Las configuraciones de las plataformas de pruebas de potencia / EM abarcadas dentro de la presente tesis. El contenido de esta tesis se amplia y profundiza a partir del capítulo 2, en el cual se abordan varios aspectos claves. En primer lugar, el principio de protección de la compensación dinámica de la lógica genérica de precarga de doble carril (Dual-rail Precharge Logic-DPL) se explica mediante la descripción de los elementos compensados a nivel de puerta. En segundo lugar, la lógica PA-DPL es propuesta como aportación original, detallando el protocolo de la lógica y un caso de aplicación. En tercer lugar, dos flujos de diseño personalizados se muestran para realizar la conversión de doble carril. Junto con ello, se aclaran las definiciones técnicas relacionadas con la manipulación por encima de la netlist a nivel de LUT. Finalmente, una breve discusión sobre el proceso global se aborda en la parte final del capítulo. El Capítulo 3 estudia los principales retos durante la implementación de DPLs en FPGAs. El nivel de seguridad de las soluciones de resistencia a SCA encontradas en el estado del arte se ha degenerado debido a las barreras de implantación a través de herramientas EDA convencionales. En el escenario de la arquitectura FPGA estudiada, se discuten los problemas de los formatos de doble carril, impactos parásitos, sesgo tecnológico y la viabilidad de implementación. De acuerdo con estas elaboraciones, se plantean dos problemas: Cómo implementar la lógica propuesta sin penalizar los niveles de seguridad, y cómo manipular un gran número de celdas y automatizar el proceso. El PA-DPL propuesto en el capítulo 2 se valida con una serie de iniciativas, desde características estructurales como doble carril entrelazado o redes de rutado clonadas, hasta los métodos de aplicación tales como las herramientas de personalización y automatización de EDA. Por otra parte, un sistema de calefacción auto-adaptativo es representado y aplicado a una lógica de doble núcleo, con el fin de ajustar alternativamente la temperatura local para equilibrar los impactos negativos de la variación del proceso durante la operación en tiempo real. El capítulo 4 se centra en los detalles de la implementación del kit de herramientas. Desarrollado sobre una API third-party, el kit de herramientas personalizado es capaz de manipular los elementos de la lógica de circuito post P&R ncd (una versión binaria ilegible del xdl) convertido al formato XDL Xilinx. El mecanismo y razón de ser del conjunto de instrumentos propuestos son cuidadosamente descritos, que cubre la detección de enrutamiento y los enfoques para la reparación. El conjunto de herramientas desarrollado tiene como objetivo lograr redes de enrutamiento estrictamente idénticos para la lógica de doble carril, tanto para posicionamiento separado como para el entrelazado. Este capítulo particularmente especifica las bases técnicas para apoyar las implementaciones en los dispositivos de Xilinx y su flexibilidad para ser utilizado sobre otras aplicaciones. El capítulo 5 se enfoca en la aplicación de los casos de estudio para la validación de los grados de seguridad de la lógica propuesta. Se discuten los problemas técnicos detallados durante la ejecución y algunas nuevas técnicas de implementación. (a) Se discute el impacto en el proceso de posicionamiento de la lógica utilizando el kit de herramientas propuesto. Diferentes esquemas de implementación, tomando en cuenta la optimización global en seguridad y coste, se verifican con los experimentos con el fin de encontrar los planes de posicionamiento y reparación optimizados; (b) las validaciones de seguridad se realizan con los métodos de correlación y análisis de tiempo; (c) Una táctica asintótica se aplica a un núcleo AES sobre BCDL estructurado para validar de forma sofisticada el impacto de enrutamiento sobre métricas de seguridad; (d) Los resultados preliminares utilizando el sistema de calefacción auto-adaptativa sobre la variación del proceso son mostrados; (e) Se introduce una aplicación práctica de las herramientas para un diseño de cifrado completa. Capítulo 6 incluye el resumen general del trabajo presentado dentro de esta tesis doctoral. Por último, una breve perspectiva del trabajo futuro se expone, lo que puede ampliar el potencial de utilización de las contribuciones de esta tesis a un alcance más allá de los dominios de la criptografía en FPGAs. ABSTRACT This PhD thesis mainly concentrates on countermeasure techniques related to the Side Channel Attack (SCA), which has been put forward to academic exploitations since 17 years ago. The related research has seen a remarkable growth in the past decades, while the design of solid and efficient protection still curiously remain as an open research topic where more reliable initiatives are required for personal information privacy, enterprise and national data protections. The earliest documented usage of secret code can be traced back to around 1700 B.C., when the hieroglyphs in ancient Egypt are scribed in inscriptions. Information security always gained serious attention from diplomatic or military intelligence transmission. Due to the rapid evolvement of modern communication technique, crypto solution was first incorporated by electronic signal to ensure the confidentiality, integrity, availability, authenticity and non-repudiation of the transmitted contexts over unsecure cable or wireless channels. Restricted to the computation power before computer era, simple encryption tricks were practically sufficient to conceal information. However, algorithmic vulnerabilities can be excavated to restore the encoding rules with affordable efforts. This fact motivated the development of modern cryptography, aiming at guarding information system by complex and advanced algorithms. The appearance of computers has greatly pushed forward the invention of robust cryptographies, which efficiently offers resistance relying on highly strengthened computing capabilities. Likewise, advanced cryptanalysis has greatly driven the computing technologies in turn. Nowadays, the information world has been involved into a crypto world, protecting any fields by pervasive crypto solutions. These approaches are strong because of the optimized mergence between modern mathematical theories and effective hardware practices, being capable of implement crypto theories into various platforms (microprocessor, ASIC, FPGA, etc). Security needs from industries are actually the major driving metrics in electronic design, aiming at promoting the construction of systems with high performance without sacrificing security. Yet a vulnerability in practical implementation found by Prof. Paul Kocher, et al in 1996 implies that modern digital circuits are inherently vulnerable to an unconventional attack approach, which was named as side-channel attack since then from its analysis source. Critical suspicions to theoretically sound modern crypto algorithms surfaced almost immediately after this discovery. To be specifically, digital circuits typically consist of a great number of essential logic elements (as MOS - Metal Oxide Semiconductor), built upon a silicon substrate during the fabrication. Circuit logic is realized relying on the countless switch actions of these cells. This mechanism inevitably results in featured physical emanation that can be properly measured and correlated with internal circuit behaviors. SCAs can be used to reveal the confidential data (e.g. crypto-key), analyze the logic architecture, timing and even inject malicious faults to the circuits that are implemented in hardware system, like FPGA, ASIC, smart Card. Using various comparison solutions between the predicted leakage quantity and the measured leakage, secrets can be reconstructed at much less expense of time and computation. To be precisely, SCA basically encloses a wide range of attack types, typically as the analyses of power consumption or electromagnetic (EM) radiation. Both of them rely on statistical analyses, and hence require a number of samples. The crypto algorithms are not intrinsically fortified with SCA-resistance. Because of the severity, much attention has to be taken into the implementation so as to assemble countermeasures to camouflage the leakages via "side channels". Countermeasures against SCA are evolving along with the development of attack techniques. The physical characteristics requires countermeasures over physical layer, which can be generally classified into intrinsic and extrinsic vectors. Extrinsic countermeasures are executed to confuse the attacker by integrating noise, misalignment to the intra activities. Comparatively, intrinsic countermeasures are built into the algorithm itself, to modify the implementation for minimizing the measurable leakage, or making them not sensitive any more. Hiding and Masking are two typical techniques in this category. Concretely, masking applies to the algorithmic level, to alter the sensitive intermediate values with a mask in reversible ways. Unlike the linear masking, non-linear operations that widely exist in modern cryptographies are difficult to be masked. Approved to be an effective counter solution, hiding method mainly mentions dual-rail logic, which is specially devised for flattening or removing the data-dependent leakage in power or EM signatures. In this thesis, apart from the context describing the attack methodologies, efforts have also been dedicated to logic prototype, to mount extensive security investigations to countermeasures on logic-level. A characteristic of SCA resides on the format of leak sources. Typical side-channel attack concerns the power based analysis, where the fundamental capacitance from MOS transistors and other parasitic capacitances are the essential leak sources. Hence, a robust SCA-resistant logic must eliminate or mitigate the leakages from these micro units, such as basic logic gates, I/O ports and routings. The vendor provided EDA tools manipulate the logic from a higher behavioral-level, rather than the lower gate-level where side-channel leakage is generated. So, the classical implementations barely satisfy these needs and inevitably stunt the prototype. In this case, a customized and flexible design scheme is appealing to be devised. This thesis profiles an innovative logic style to counter SCA, which mainly addresses three major aspects: I. The proposed logic is based on the hiding strategy over gate-level dual-rail style to dynamically overbalance side-channel leakage from lower circuit layer; II. This logic exploits architectural features of modern FPGAs, to minimize the implementation expenses; III. It is supported by a set of assistant custom tools, incorporated by the generic FPGA design flow, to have circuit manipulations in an automatic manner. The automatic design toolkit supports the proposed dual-rail logic, facilitating the practical implementation on Xilinx FPGA families. While the methodologies and the tools are flexible to be expanded to a wide range of applications where rigid and sophisticated gate- or routing- constraints are desired. In this thesis a great effort is done to streamline the implementation workflow of generic dual-rail logic. The feasibility of the proposed solutions is validated by selected and widely used crypto algorithm, for thorough and fair evaluation w.r.t. prior solutions. All the proposals are effectively verified by security experiments. The presented research work attempts to solve the implementation troubles. The essence that will be formalized along this thesis is that a customized execution toolkit for modern FPGA systems is developed to work together with the generic FPGA design flow for creating innovative dual-rail logic. A method in crypto security area is constructed to obtain customization, automation and flexibility in low-level circuit prototype with fine-granularity in intractable routings. Main contributions of the presented work are summarized next: Precharge Absorbed-DPL logic: Using the netlist conversion to reserve free LUT inputs to execute the Precharge and Ex signal in a dual-rail logic style. A row-crossed interleaved placement method with identical routing pairs in dual-rail networks, which helps to increase the resistance against selective EM measurement and mitigate the impacts from process variations. Customized execution and automatic transformation tools for producing identical networks for the proposed dual-rail logic. (a) To detect and repair the conflict nets; (b) To detect and repair the asymmetric nets. (c) To be used in other logics where strict network control is required in Xilinx scenario. Customized correlation analysis testbed for EM and power attacks, including the platform construction, measurement method and attack analysis. A timing analysis based method for quantifying the security grades. A methodology of security partitions of complex crypto systems for reducing the protection cost. A proof-of-concept self-adaptive heating system to mitigate electrical impacts over process variations in dynamic dual-rail compensation manner. The thesis chapters are organized as follows: Chapter 1 discusses the side-channel attack fundamentals, which covers from theoretic basics to analysis models, and further to platform setup and attack execution. Chapter 2 centers to SCA-resistant strategies against generic power and EM attacks. In this chapter, a major contribution, a compact and secure dual-rail logic style, will be originally proposed. The logic transformation based on bottom-layer design will be presented. Chapter 3 is scheduled to elaborate the implementation challenges of generic dual-rail styles. A customized design flow to solve the implementation problems will be described along with a self-developed automatic implementation toolkit, for mitigating the design barriers and facilitating the processes. Chapter 4 will originally elaborate the tool specifics and construction details. The implementation case studies and security validations for the proposed logic style, as well as a sophisticated routing verification experiment, will be described in Chapter 5. Finally, a summary of thesis conclusions and perspectives for future work are included in Chapter 5. To better exhibit the thesis contents, each chapter is further described next: Chapter 1 provides the introduction of hardware implementation testbed and side-channel attack fundamentals, and mainly contains: (a) The FPGA generic architecture and device features, particularly of Virtex-5 FPGA; (b) The selected crypto algorithm - a commercially and extensively used Advanced Encryption Standard (AES) module - is detailed; (c) The essentials of Side-Channel methods are profiled. It reveals the correlated dissipation leakage to the internal behaviors, and the method to recover this relationship between the physical fluctuations in side-channel traces and the intra processed data; (d) The setups of the power/EM testing platforms enclosed inside the thesis work are given. The content of this thesis is expanded and deepened from chapter 2, which is divided into several aspects. First, the protection principle of dynamic compensation of the generic dual-rail precharge logic is explained by describing the compensated gate-level elements. Second, the novel DPL is originally proposed by detailing the logic protocol and an implementation case study. Third, a couple of custom workflows are shown next for realizing the rail conversion. Meanwhile, the technical definitions that are about to be manipulated above LUT-level netlist are clarified. A brief discussion about the batched process is given in the final part. Chapter 3 studies the implementation challenges of DPLs in FPGAs. The security level of state-of-the-art SCA-resistant solutions are decreased due to the implementation barriers using conventional EDA tools. In the studied FPGA scenario, problems are discussed from dual-rail format, parasitic impact, technological bias and implementation feasibility. According to these elaborations, two problems arise: How to implement the proposed logic without crippling the security level; and How to manipulate a large number of cells and automate the transformation. The proposed PA-DPL in chapter 2 is legalized with a series of initiatives, from structures to implementation methods. Furthermore, a self-adaptive heating system is depicted and implemented to a dual-core logic, assumed to alternatively adjust local temperature for balancing the negative impacts from silicon technological biases on real-time. Chapter 4 centers to the toolkit system. Built upon a third-party Application Program Interface (API) library, the customized toolkit is able to manipulate the logic elements from post P&R circuit (an unreadable binary version of the xdl one) converted to Xilinx xdl format. The mechanism and rationale of the proposed toolkit are carefully convoyed, covering the routing detection and repairing approaches. The developed toolkit aims to achieve very strictly identical routing networks for dual-rail logic both for separate and interleaved placement. This chapter particularly specifies the technical essentials to support the implementations in Xilinx devices and the flexibility to be expanded to other applications. Chapter 5 focuses on the implementation of the case studies for validating the security grades of the proposed logic style from the proposed toolkit. Comprehensive implementation techniques are discussed. (a) The placement impacts using the proposed toolkit are discussed. Different execution schemes, considering the global optimization in security and cost, are verified with experiments so as to find the optimized placement and repair schemes; (b) Security validations are realized with correlation, timing methods; (c) A systematic method is applied to a BCDL structured module to validate the routing impact over security metric; (d) The preliminary results using the self-adaptive heating system over process variation is given; (e) A practical implementation of the proposed toolkit to a large design is introduced. Chapter 6 includes the general summary of the complete work presented inside this thesis. Finally, a brief perspective for the future work is drawn which might expand the potential utilization of the thesis contributions to a wider range of implementation domains beyond cryptography on FPGAs.
Resumo:
Con esta disertación se pretenden resolver algunos de los problemas encontrados actualmente en la recepción de señales de satélites bajo dos escenarios particularmente exigentes: comunicaciones de Espacio Profundo y en banda Ka. Las comunicaciones con sondas de Espacio Profundo necesitan grandes aperturas en tierra para poder incrementar la velocidad de datos. La opción de usar antennas con diámetro mayor de 35 metros tiene serios problemas, pues antenas tan grandes son caras de mantener, difíciles de apuntar, pueden tener largos tiempo de reparación y además tienen una efeciencia decreciente a medida que se utilizan bandas más altas. Soluciones basadas en agrupaciones de antenas de menor tamaño (12 ó 35 metros) son mas ecónomicas y factibles técnicamente. Las comunicaciones en banda Ka tambien pueden beneficiarse de la combinación de múltiples antennas. Las antenas de menor tamaño son más fáciles de apuntar y además tienen un campo de visión mayor. Además, las técnicas de diversidad espacial pueden ser reemplazadas por una combinación de antenas para así incrementar el margen del enlace. La combinación de antenas muy alejadas sobre grandes anchos de banda, bien por recibir una señal de banda ancha o múltiples de banda estrecha, es complicada técnicamente. En esta disertación se demostrará que el uso de conformador de haz en el dominio de la frecuencia puede ayudar a relajar los requisitos de calibración y, al mismo tiempo, proporcionar un mayor campo de visión y mayores capacidades de ecualización. Para llevar esto a cabo, el trabajo ha girado en torno a tres aspectos fundamentales. El primero es la investigación bibliográfica del trabajo existente en este campo. El segundo es el modelado matemático del proceso de combinación y el desarrollo de nuevos algoritmos de estimación de fase y retardo. Y el tercero es la propuesta de nuevas aplicaciones en las que usar estas técnicas. La investigación bibliográfica se centra principalmente en los capítulos 1, 2, 4 y 5. El capítulo 1 da una breve introducción a la teoría de combinación de antenas de gran apertura. En este capítulo, los principales campos de aplicación son descritos y además se establece la necesidad de compensar retardos en subbandas. La teoría de bancos de filtros se expone en el capítulo 2; se selecciona y simula un banco de filtros modulado uniformemente con fase lineal. Las propiedades de convergencia de varios filtros adaptativos se muestran en el capítulo 4. Y finalmente, las técnicas de estimación de retardo son estudiadas y resumidas en el capítulo 5. Desde el punto de vista matemático, las principales contribución de esta disertación han sido: • Sección 3.1.4. Cálculo de la desviación de haz de un conformador de haz con compensación de retardo en pasos discretos en frecuencia intermedia. • Sección 3.2. Modelo matemático de un conformador de haz en subbandas. • Sección 3.2.2. Cálculo de la desviación de haz de un conformador de haz en subbandas con un buffer de retardo grueso. • Sección 3.2.4. Análisis de la influencia de los alias internos en la compensación en subbandas de retardo y fase. • Sección 3.2.4.2. Cálculo de la desviación de haz de un conformador de haz con compensación de retardo en subbandas. • Sección 3.2.6. Cálculo de la ganancia de relación señal a ruido de la agrupación de antenas en cada una de las subbandas. • Sección 3.3.2. Modelado de la función de transferencia de la agrupación de antenas bajo errores de estimación de retardo. • Sección 3.3.3. Modelado de los efectos de derivas de fase y retardo entre actualizaciones de las estimaciones. • Sección 3.4. Cálculo de la directividad de la agrupación de antenas con y sin compensación de retardos en subbandas. • Sección 5.2.6. Desarrollo de un algorimo para estimar la fase y el retardo entre dos señales a partir de su descomposición de subbandas bajo entornos estacionarios. • Sección 5.5.1. Desarrollo de un algorimo para estimar la fase, el retardo y la deriva de retardo entre dos señales a partir de su descomposición de subbandas bajo entornos no estacionarios. Las aplicaciones que se pueden beneficiar de estas técnicas son descritas en el capítulo 7: • Sección 6.2. Agrupaciones de antenas para comunicaciones de Espacio Profundo con capacidad multihaz y sin requisitos de calibración geométrica o de retardo de grupo. • Sección 6.2.6. Combinación en banda ancha de antenas con separaciones de miles de kilómetros, para recepción de sondas de espacio profundo. • Secciones 6.4 and 6.3. Combinación de estaciones remotas en banda Ka en escenarios de diversidad espacial, para recepción de satélites LEO o GEO. • Sección 6.3. Recepción de satélites GEO colocados con arrays de antenas multihaz. Las publicaciones a las que ha dado lugar esta tesis son las siguientes • A. Torre. Wideband antenna arraying over long distances. Interplanetary Progress Report, 42-194:1–18, 2013. En esta pulicación se resumen los resultados de las secciones 3.2, 3.2.2, 3.3.2, los algoritmos en las secciones 5.2.6, 5.5.1 y la aplicación destacada en 6.2.6. • A. Torre. Reception of wideband signals from geostationary collocated satellites with antenna arrays. IET Communications, Vol. 8, Issue 13:2229–2237, September, 2014. En esta segunda se muestran los resultados de la sección 3.2.4, el algoritmo en la sección 5.2.6.1 , y la aplicación mostrada en 6.3. ABSTRACT This dissertation is an attempt to solve some of the problems found nowadays in the reception of satellite signals under two particular challenging scenarios: Deep Space and Ka-band communications. Deep Space communications require from larger apertures on ground in order to increase the data rate. The option of using single dishes with diameters larger than 35 meters has severe drawbacks. Such antennas are expensive to maintain, prone to long downtimes, difficult to point and have a degraded performance in high frequency bands. The array solution, either with 12 meter or 35 meter antennas is deemed to be the most economically and technically feasible solution. Ka-band communications can also benefit from antenna arraying technology. The smaller aperture antennas that make up the array are easier to point and have a wider field of view allowing multiple simultaneous beams. Besides, site diversity techniques can be replaced by pure combination in order to increase link margin. Combination of far away antennas over a large bandwidth, either because a wideband signal or multiple narrowband signals are received, is a demanding task. This dissertation will show that the use of frequency domain beamformers with subband delay compensation can help to ease calibration requirements and, at the same time, provide with a wider field of view and enhanced equalization capabilities. In order to do so, the work has been focused on three main aspects. The first one is the bibliographic research of previous work on this subject. The second one is the mathematical modeling of the array combination process and the development of new phase/delay estimation algorithms. And the third one is the proposal of new applications in which these techniques can be used. Bibliographic research is mainly done in chapters 1, 2, 4 and 5. Chapter 1 gives a brief introduction to previous work in the field of large aperture antenna arraying. In this chapter, the main fields of application are described and the need for subband delay compensation is established. Filter bank theory is shown in chapter 2; a linear phase uniform modulated filter bank is selected and simulated under diverse conditions. The convergence properties of several adaptive filters are shown in chapter 4. Finally, delay estimation techniques are studied and summarized in chapter 5. From a mathematical point of view, the main contributions of this dissertation have been: • Section 3.1.4. Calculation of beam squint of an IF beamformer with delay compensation at discrete time steps. • Section 3.2. Establishment of a mathematical model of a subband beamformer. • Section 3.2.2. Calculation of beam squint in a subband beamformer with a coarse delay buffer. • Section 3.2.4. Analysis of the influence of internal aliasing on phase and delay subband compensation. • Section 3.2.4.2. Calculation of beam squint of a beamformer with subband delay compensation. • Section 3.2.6. Calculation of the array SNR gain at each of the subbands. • Section 3.3.2. Modeling of the transfer function of an array subject to delay estimation errors. • Section 3.3.3. Modeling of the effects of phase and delay drifts between estimation updates. • Section 3.4. Calculation of array directivity with and without subband delay compensation. • Section 5.2.6. Development of an algorithm to estimate relative delay and phase between two signals from their subband decomposition in stationary environments. • Section 5.5.1. Development of an algorithm to estimate relative delay rate, delay and phase between two signals from their subband decomposition in non stationary environments. The applications that can benefit from these techniques are described in chapter 7: • Section 6.2. Arrays of antennas for Deep Space communications with multibeam capacity and without geometric or group delay calibration requirement. • Section 6.2.6. Wideband antenna arraying over long distances, in the range of thousands of kilometers, for reception of Deep Space probes. • Sections 6.4 y 6.3. Combination of remote stations in Ka-band site diversity scenarios for reception of LEO or GEO satellites. • Section 6.3. Reception of GEO collocated satellites with multibeam antenna arrays. The publications that have been made from the work in this dissertation are • A. Torre. Wideband antenna arraying over long distances. Interplanetary Progress Report, 42-194:1–18, 2013. This article shows the results in sections 3.2, 3.2.2, 3.3.2, the algorithms in sections 5.2.6, 5.5.1 and the application in section 6.2.6. • A. Torre. Reception of wideband signals from geostationary collocated satellites with antenna arrays. IET Communications, Vol. 8, Issue 13:2229–2237, September, 2014. This second article shows among others the results in section 3.2.4, the algorithm in section 5.2.6.1 , and the application in section 6.3.
Resumo:
Contemporary Art Fair - ARCO, Madrid (1990)
Resumo:
Los dispositivos móviles modernos disponen cada vez de más funcionalidad debido al rápido avance de las tecnologías de las comunicaciones y computaciones móviles. Sin embargo, la capacidad de la batería no ha experimentado un aumento equivalente. Por ello, la experiencia de usuario en los sistemas móviles modernos se ve muy afectada por la vida de la batería, que es un factor inestable de difícil de control. Para abordar este problema, investigaciones anteriores han propuesto un esquema de gestion del consumo (PM) centrada en la energía y que proporciona una garantía sobre la vida operativa de la batería mediante la gestión de la energía como un recurso de primera clase en el sistema. Como el planificador juega un papel fundamental en la administración del consumo de energía y en la garantía del rendimiento de las aplicaciones, esta tesis explora la optimización de la experiencia de usuario para sistemas móviles con energía limitada desde la perspectiva de un planificador que tiene en cuenta el consumo de energía en un contexto en el que ésta es un recurso de primera clase. En esta tesis se analiza en primer lugar los factores que contribuyen de forma general a la experiencia de usuario en un sistema móvil. Después se determinan los requisitos esenciales que afectan a la experiencia de usuario en la planificación centrada en el consumo de energía, que son el reparto proporcional de la potencia, el cumplimiento de las restricciones temporales, y cuando sea necesario, el compromiso entre la cuota de potencia y las restricciones temporales. Para cumplir con los requisitos, el algoritmo clásico de fair queueing y su modelo de referencia se extienden desde los dominios de las comunicaciones y ancho de banda de CPU hacia el dominio de la energía, y en base a ésto, se propone el algoritmo energy-based fair queueing (EFQ) para proporcionar una planificación basada en la energía. El algoritmo EFQ está diseñado para compartir la potencia consumida entre las tareas mediante su planificación en función de la energía consumida y de la cuota reservada. La cuota de consumo de cada tarea con restricciones temporales está protegida frente a diversos cambios que puedan ocurrir en el sistema. Además, para dar mejor soporte a las tareas en tiempo real y multimedia, se propone un mecanismo para combinar con el algoritmo EFQ para dar preferencia en la planificación durante breves intervalos de tiempo a las tareas más urgentes con restricciones temporales.Las propiedades del algoritmo EFQ se evaluan a través del modelado de alto nivel y la simulación. Los resultados de las simulaciones indican que los requisitos esenciales de la planificación centrada en la energía pueden lograrse. El algoritmo EFQ se implementa más tarde en el kernel de Linux. Para evaluar las propiedades del planificador EFQ basado en Linux, se desarrolló un banco de pruebas experimental basado en una sitema empotrado, un programa de banco de pruebas multihilo, y un conjunto de pruebas de código abierto. A través de experimentos específicamente diseñados, esta tesis verifica primero las propiedades de EFQ en la gestión de la cuota de consumo de potencia y la planificación en tiempo real y, a continuación, explora los beneficios potenciales de emplear la planificación EFQ en la optimización de la experiencia de usuario para sistemas móviles con energía limitada. Los resultados experimentales sobre la gestión de la cuota de energía muestran que EFQ es más eficaz que el planificador de Linux-CFS en la gestión de energía, logrando un reparto proporcional de la energía del sistema independientemente de en qué dispositivo se consume la energía. Los resultados experimentales en la planificación en tiempo real demuestran que EFQ puede lograr de forma eficaz, flexible y robusta el cumplimiento de las restricciones temporales aunque se dé el caso de aumento del el número de tareas o del error en la estimación de energía. Por último, un análisis comparativo de los resultados experimentales sobre la optimización de la experiencia del usuario demuestra que, primero, EFQ es más eficaz y flexible que los algoritmos tradicionales de planificación del procesador, como el que se encuentra por defecto en el planificador de Linux y, segundo, que proporciona la posibilidad de optimizar y preservar la experiencia de usuario para los sistemas móviles con energía limitada. Abstract Modern mobiledevices have been becoming increasingly powerful in functionality and entertainment as the next-generation mobile computing and communication technologies are rapidly advanced. However, the battery capacity has not experienced anequivalent increase. The user experience of modern mobile systems is therefore greatly affected by the battery lifetime,which is an unstable factor that is hard to control. To address this problem, previous works proposed energy-centric power management (PM) schemes to provide strong guarantee on the battery lifetime by globally managing energy as the first-class resource in the system. As the processor scheduler plays a pivotal role in power management and application performance guarantee, this thesis explores the user experience optimization of energy-limited mobile systemsfrom the perspective of energy-centric processor scheduling in an energy-centric context. This thesis first analyzes the general contributing factors of the mobile system user experience.Then itdetermines the essential requirements on the energy-centric processor scheduling for user experience optimization, which are proportional power sharing, time-constraint compliance, and when necessary, a tradeoff between the power share and the time-constraint compliance. To meet the requirements, the classical fair queuing algorithm and its reference model are extended from the network and CPU bandwidth sharing domain to the energy sharing domain, and based on that, the energy-based fair queuing (EFQ) algorithm is proposed for performing energy-centric processor scheduling. The EFQ algorithm is designed to provide proportional power shares to tasks by scheduling the tasks based on their energy consumption and weights. The power share of each time-sensitive task is protected upon the change of the scheduling environment to guarantee a stable performance, and any instantaneous power share that is overly allocated to one time-sensitive task can be fairly re-allocated to the other tasks. In addition, to better support real-time and multimedia scheduling, certain real-time friendly mechanism is combined into the EFQ algorithm to give time-limited scheduling preference to the time-sensitive tasks. Through high-level modelling and simulation, the properties of the EFQ algorithm are evaluated. The simulation results indicate that the essential requirements of energy-centric processor scheduling can be achieved. The EFQ algorithm is later implemented in the Linux kernel. To assess the properties of the Linux-based EFQ scheduler, an experimental test-bench based on an embedded platform, a multithreading test-bench program, and an open-source benchmark suite is developed. Through specifically-designed experiments, this thesis first verifies the properties of EFQ in power share management and real-time scheduling, and then, explores the potential benefits of employing EFQ scheduling in the user experience optimization for energy-limited mobile systems. Experimental results on power share management show that EFQ is more effective than the Linux-CFS scheduler in managing power shares and it can achieve a proportional sharing of the system power regardless of on which device the energy is spent. Experimental results on real-time scheduling demonstrate that EFQ can achieve effective, flexible and robust time-constraint compliance upon the increase of energy estimation error and task number. Finally, a comparative analysis of the experimental results on user experience optimization demonstrates that EFQ is more effective and flexible than traditional processor scheduling algorithms, such as those of the default Linux scheduler, in optimizing and preserving the user experience of energy-limited mobile systems.
Resumo:
MLS-based identification of nonlinear systems is largely affected by deviations in the excitation signal amenable to the combined effect of DC-offset and an arbitrary gain. These induce orthogonality loss in the MLS filter bank output, thus invalidating the underlying identification construction. In this paper we present a correction algorithm to derive the corrected Volterra kernels from the biased estimations provided by the standard MLS-based procedure.