7 resultados para Facial emotion recognition

em Universidad Politécnica de Madrid


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Extracting opinions and emotions from text is becoming increasingly important, especially since the advent of micro-blogging and social networking. Opinion mining is particularly popular and now gathers many public services, datasets and lexical resources. Unfortunately, there are few available lexical and semantic resources for emotion recognition that could foster the development of new emotion aware services and applications. The diversity of theories of emotion and the absence of a common vocabulary are two of the main barriers to the development of such resources. This situation motivated the creation of Onyx, a semantic vocabulary of emotions with a focus on lexical resources and emotion analysis services. It follows a linguistic Linked Data approach, it is aligned with the Provenance Ontology, and it has been integrated with the Lexicon Model for Ontologies (lemon), a popular RDF model for representing lexical entries. This approach also means a new and interesting way to work with different theories of emotion. As part of this work, Onyx has been aligned with EmotionML and WordNet-Affect.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Desde hace más de 20 años, muchos grupos de investigación trabajan en el estudio de técnicas de reconocimiento automático de expresiones faciales. En los últimos años, gracias al avance de las metodologías, ha habido numerosos avances que hacen posible una rápida detección de las caras presentes en una imagen y proporcionan algoritmos de clasificación de expresiones. En este proyecto se realiza un estudio sobre el estado del arte en reconocimiento automático de emociones, para conocer los diversos métodos que existen en el análisis facial y en el reconocimiento de la emoción. Con el fin de poder comparar estos métodos y otros futuros, se implementa una herramienta modular y ampliable y que además integra un método de extracción de características que consiste en la obtención de puntos de interés en la cara y dos métodos para clasificar la expresión, uno mediante comparación de desplazamientos de los puntos faciales, y otro mediante detección de movimientos específicos llamados unidades de acción. Para el entrenamiento del sistema y la posterior evaluación del mismo, se emplean las bases de datos Cohn-Kanade+ y JAFFE, de libre acceso a la comunidad científica. Después, una evaluación de estos métodos es llevada a cabo usando diferentes parámetros, bases de datos y variando el número de emociones. Finalmente, se extraen conclusiones del trabajo y su evaluación, proponiendo las mejoras necesarias e investigación futura. ABSTRACT. Currently, many research teams focus on the study of techniques for automatic facial expression recognition. Due to the appearance of digital image processing, in recent years there have been many advances in the field of face detection, feature extraction and expression classification. In this project, a study of the state of the art on automatic emotion recognition is performed to know the different methods existing in facial feature extraction and emotion recognition. To compare these methods, a user friendly tool is implemented. Besides, a feature extraction method is developed which consists in obtaining 19 facial feature points. Those are passed to two expression classifier methods, one based on point displacements, and one based on the recognition of facial Action Units. Cohn-Kanade+ and JAFFE databases, both freely available to the scientific community, are used for system training and evaluation. Then, an evaluation of the methods is performed with different parameters, databases and varying the number of emotions. Finally, conclusions of the work and its evaluation are extracted, proposing some necessary improvements and future research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When designing human-machine interfaces it is important to consider not only the bare bones functionality but also the ease of use and accessibility it provides. When talking about voice-based inter- faces, it has been proven that imbuing expressiveness into the synthetic voices increases signi?cantly its perceived naturalness, which in the end is very helpful when building user friendly interfaces. This paper proposes an adaptation based expressiveness transplantation system capable of copying the emotions of a source speaker into any desired target speaker with just a few minutes of read speech and without requiring the record- ing of additional expressive data. This system was evaluated through a perceptual test for 3 speakers showing up to an average of 52% emotion recognition rates relative to the natural voice recognition rates, while at the same time keeping good scores in similarity and naturality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En el trabajo que aquí presentamos se incluye la base teórica (sintaxis y semántica) y una implementación de un framework para codificar el razonamiento de la representación difusa o borrosa del mundo (tal y como nosotros, seres humanos, entendemos éste). El interés en la realización de éste trabajo parte de dos fuentes: eliminar la complejidad existente cuando se realiza una implementación con un lenguaje de programación de los llamados de propósito general y proporcionar una herramienta lo suficientemente inteligente para dar respuestas de forma constructiva a consultas difusas o borrosas. El framework, RFuzzy, permite codificar reglas y consultas en una sintaxis muy cercana al lenguaje natural usado por los seres humanos para expresar sus pensamientos, pero es bastante más que eso. Permite representar conceptos muy interesantes, como fuzzificaciones (funciones usadas para convertir conceptos no difusos en difusos), valores por defecto (que se usan para devolver resultados un poco menos válidos que los que devolveríamos si tuviésemos la información necesaria para calcular los más válidos), similaridad entre atributos (característica que utilizamos para buscar aquellos individuos en la base de datos con una característica similar a la buscada), sinónimos o antónimos y, además, nos permite extender el numero de conectivas y modificadores (incluyendo modificadores de negación) que podemos usar en las reglas y consultas. La personalización de la definición de conceptos difusos (muy útil para lidiar con el carácter subjetivo de los conceptos borrosos, donde nos encontramos con que cualificar a alguien de “alto” depende de la altura de la persona que cualifica) es otra de las facilidades incluida. Además, RFuzzy implementa la semántica multi-adjunta. El interés en esta reside en que introduce la posibilidad de obtener la credibilidad de una regla a partir de un conjunto de datos y una regla dada y no solo el grado de satisfacción de una regla a partir de el universo modelado en nuestro programa. De esa forma podemos obtener automáticamente la credibilidad de una regla para una determinada situación. Aún cuando la contribución teórica de la tesis es interesante en si misma, especialmente la inclusión del modificador de negacion, sus multiples usos practicos lo son también. Entre los diferentes usos que se han dado al framework destacamos el reconocimiento de emociones, el control de robots, el control granular en computacion paralela/distribuída y las busquedas difusas o borrosas en bases de datos. ABSTRACT In this work we provide a theoretical basis (syntax and semantics) and a practical implementation of a framework for encoding the reasoning and the fuzzy representation of the world (as human beings understand it). The interest for this work comes from two sources: removing the existing complexity when doing it with a general purpose programming language (one developed without focusing in providing special constructions for representing fuzzy information) and providing a tool intelligent enough to answer, in a constructive way, expressive queries over conventional data. The framework, RFuzzy, allows to encode rules and queries in a syntax very close to the natural language used by human beings to express their thoughts, but it is more than that. It allows to encode very interesting concepts, as fuzzifications (functions to easily fuzzify crisp concepts), default values (used for providing results less adequate but still valid when the information needed to provide results is missing), similarity between attributes (used to search for individuals with a characteristic similar to the one we are looking for), synonyms or antonyms and it allows to extend the number of connectives and modifiers (even negation) we can use in the rules. The personalization of the definition of fuzzy concepts (very useful for dealing with the subjective character of fuzziness, in which a concept like tall depends on the height of the person performing the query) is another of the facilities included. Besides, RFuzzy implements the multi-adjoint semantics. The interest in them is that in addition to obtaining the grade of satisfaction of a consequent from a rule, its credibility and the grade of satisfaction of the antecedents we can determine from a set of data how much credibility we must assign to a rule to model the behaviour of the set of data. So, we can determine automatically the credibility of a rule for a particular situation. Although the theoretical contribution is interesting by itself, specially the inclusion of the negation modifier, the practical usage of it is equally important. Between the different uses given to the framework we highlight emotion recognition, robocup control, granularity control in parallel/distributed computing and flexible searches in databases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El objetivo principal alrededor del cual se desenvuelve este proyecto es el desarrollo de un sistema de reconocimiento facial. Entre sus objetivos específicos se encuentran: realizar una primera aproximación sobre las técnicas de reconocimiento facial existentes en la actualidad, elegir una aplicación donde pueda ser útil el reconocimiento facial, diseñar y desarrollar un programa en MATLAB que lleve a cabo la función de reconocimiento facial, y evaluar el funcionamiento del sistema desarrollado. Este documento se encuentra dividido en cuatro partes: INTRODUCCIÓN, MARCO TEÓRICO, IMPLEMENTACIÓN, y RESULTADOS, CONCLUSIONES Y LÍNEAS FUTURAS. En la primera parte, se hace una introducción relativa a la actualidad del reconocimiento facial y se comenta brevemente sobre las técnicas existentes para desarrollar un sistema biométrico de este tipo. En ella se justifican también aquellas técnicas que acabaron formando parte de la implementación. En la segunda parte, el marco teórico, se explica la estructura general que tiene un sistema de reconocimiento biométrico, así como sus modos de funcionamiento, y las tasas de error utilizadas para evaluar y comparar su rendimiento. Así mismo, se lleva a cabo una descripción más profunda sobre los conceptos y métodos utilizados para efectuar la detección y reconocimiento facial en la tercera parte del proyecto. La tercera parte abarca una descripción detallada de la solución propuesta. En ella se explica el diseño, características y aplicación de la implementación; que trata de un programa elaborado en MATLAB con interfaz gráfica, y que utiliza cuatro sistemas de reconocimiento facial, basados cada uno en diferentes técnicas: Análisis por componentes principales, análisis lineal discriminante, wavelets de Gabor, y emparejamiento de grafos elásticos. El programa ofrece además la capacidad de crear y editar una propia base de datos con etiquetas, dándole aplicación directa sobre el tema que se trata. Se proponen además una serie de características con el objetivo de ampliar y mejorar las funcionalidades del programa diseñado. Dentro de dichas características destaca la propuesta de un modo de verificación híbrido aplicable a cualquier rama de la biometría y un programa de evaluación capaz de medir, graficar, y comparar las configuraciones de cada uno de los sistemas de reconocimiento implementados. Otra característica destacable es la herramienta programada para la creación de grafos personalizados y generación de modelos, aplicable a reconocimiento de objetos en general. En la cuarta y última parte, se presentan al principio los resultados obtenidos. En ellos se contemplan y analizan las comparaciones entre las distintas configuraciones de los sistemas de reconocimiento implementados para diferentes bases de datos (una de ellas formada con imágenes con condiciones de adquisición no controladas). También se miden las tasas de error del modo de verificación híbrido propuesto. Finalmente, se extraen conclusiones, y se proponen líneas futuras de investigación. ABSTRACT The main goal of this project is to develop a facial recognition system. To meet this end, it was necessary to accomplish a series of specific objectives, which were: researching on the existing face recognition technics nowadays, choosing an application where face recognition might be useful, design and develop a face recognition system using MATLAB, and measure the performance of the implemented system. This document is divided into four parts: INTRODUCTION, THEORTICAL FRAMEWORK, IMPLEMENTATION, and RESULTS, CONCLUSSIONS AND FUTURE RESEARCH STUDIES. In the first part, an introduction is made in relation to facial recognition nowadays, and the techniques used to develop a biometric system of this kind. Furthermore, the techniques chosen to be part of the implementation are justified. In the second part, the general structure and the two basic modes of a biometric system are explained. The error rates used to evaluate and compare the performance of a biometric system are explained as well. Moreover, a description of the concepts and methods used to detect and recognize faces in the third part is made. The design, characteristics, and applications of the systems put into practice are explained in the third part. The implementation consists in developing a program with graphical user interface made in MATLAB. This program uses four face recognition systems, each of them based on a different technique: Principal Component Analysis (PCA), Fisher’s Linear Discriminant (FLD), Gabor wavelets, and Elastic Graph Matching (EGM). In addition, with this implementation it is possible to create and edit one´s tagged database, giving it a direct application. Also, a group of characteristics are proposed to enhance the functionalities of the program designed. Among these characteristics, three of them should be emphasized in this summary: A proposal of an hybrid verification mode of a biometric system; and an evaluation program capable of measuring, plotting curves, and comparing different configurations of each implemented recognition system; and a tool programmed to create personalized graphs and models (tagged graph associated to an image of a person), which can be used generally in object recognition. In the fourth and last part of the project, the results of the comparisons between different configurations of the systems implemented are shown for three databases (One of them created with pictures taken under non-controlled environments). The error rates of the proposed hybrid verification mode are measured as well. Finally, conclusions are extracted and future research studies are proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El presente proyecto trata sobre uno de los campos más problemáticos de la inteligencia artificial, el reconocimiento facial. Algo tan sencillo para las personas como es reconocer una cara conocida se traduce en complejos algoritmos y miles de datos procesados en cuestión de segundos. El proyecto comienza con un estudio del estado del arte de las diversas técnicas de reconocimiento facial, desde las más utilizadas y probadas como el PCA y el LDA, hasta técnicas experimentales que utilizan imágenes térmicas en lugar de las clásicas con luz visible. A continuación, se ha implementado una aplicación en lenguaje C++ que sea capaz de reconocer a personas almacenadas en su base de datos leyendo directamente imágenes desde una webcam. Para realizar la aplicación, se ha utilizado una de las librerías más extendidas en cuanto a procesado de imágenes y visión artificial, OpenCV. Como IDE se ha escogido Visual Studio 2010, que cuenta con una versión gratuita para estudiantes. La técnica escogida para implementar la aplicación es la del PCA ya que es una técnica básica en el reconocimiento facial, y además sirve de base para soluciones mucho más complejas. Se han estudiado los fundamentos matemáticos de la técnica para entender cómo procesa la información y en qué se datos se basa para realizar el reconocimiento. Por último, se ha implementado un algoritmo de testeo para poder conocer la fiabilidad de la aplicación con varias bases de datos de imágenes faciales. De esta forma, se puede comprobar los puntos fuertes y débiles del PCA. ABSTRACT. This project deals with one of the most problematic areas of artificial intelligence, facial recognition. Something so simple for human as to recognize a familiar face becomes into complex algorithms and thousands of data processed in seconds. The project begins with a study of the state of the art of various face recognition techniques, from the most used and tested as PCA and LDA, to experimental techniques that use thermal images instead of the classic visible light images. Next, an application has been implemented in C + + language that is able to recognize people stored in a database reading images directly from a webcam. To make the application, it has used one of the most outstretched libraries in terms of image processing and computer vision, OpenCV. Visual Studio 2010 has been chosen as the IDE, which has a free student version. The technique chosen to implement the software is the PCA because it is a basic technique in face recognition, and also provides a basis for more complex solutions. The mathematical foundations of the technique have been studied to understand how it processes the information and which data are used to do the recognition. Finally, an algorithm for testing has been implemented to know the reliability of the application with multiple databases of facial images. In this way, the strengths and weaknesses of the PCA can be checked.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a robust approach for recognition of thermal face images based on decision level fusion of 34 different region classifiers. The region classifiers concentrate on local variations. They use singular value decomposition (SVD) for feature extraction. Fusion of decisions of the region classifier is done by using majority voting technique. The algorithm is tolerant against false exclusion of thermal information produced by the presence of inconsistent distribution of temperature statistics which generally make the identification process difficult. The algorithm is extensively evaluated on UGC-JU thermal face database, and Terravic facial infrared database and the recognition performance are found to be 95.83% and 100%, respectively. A comparative study has also been made with the existing works in the literature.