4 resultados para F0

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a new Admittance-based model for electrical noise able to handle Fluctuations and Dissipations of electrical energy, we explain the phase noise of oscillators that use feedback around L-C resonators. We show that Fluctuations produce the Line Broadening of their output spectrum around its mean frequency f0 and that the Pedestal of phase noise far from f0 comes from Dissipations modified by the feedback electronics. The charge noise power 4FkT/R C2/s that disturbs the otherwise periodic fluctuation of charge these oscillators aim to sustain in their L-C-R resonator, is what creates their phase noise proportional to Leeson’s noise figure F and to the charge noise power 4kT/R C2/s of their capacitance C that today’s modelling would consider as the current noise density in A2/Hz of their resistance R. Linked with this (A2/Hz?C2/s) equivalence, R becomes a random series in time of discrete chances to Dissipate energy in Thermal Equilibrium (TE) giving a similar series of discrete Conversions of electrical energy into heat when the resonator is out of TE due to the Signal power it handles. Therefore, phase noise reflects the way oscillators sense thermal exchanges of energy with their environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a new Admittance-based model for electrical noise able to handle Fluctuations and Dissipations of electrical energy, we explain the phase noise of oscillators that use feedback around L-C resonators. We show that Fluctuations produce the Line Broadening of their output spectrum around its mean frequency f0 and that the Pedestal of phase noise far from f0 comes from Dissipations modified by the feedback electronics. The charge noise power 4FkT/R C2/s that disturbs the otherwise periodic fluctuation of charge these oscillators aim to sustain in their L-C-R resonator, is what creates their phase noise proportional to Leeson’s noise figure F and to the charge noise power 4kT/R C2/s of their capacitance C that today’s modelling would consider as the current noise density in A2/Hz of their resistance R. Linked with this (A2/Hz?C2/s) equivalence, R becomes a random series in time of discrete chances to Dissipate energy in Thermal Equilibrium (TE) giving a similar series of discrete Conversions of electrical energy into heat when the resonator is out of TE due to the Signal power it handles. Therefore, phase noise reflects the way oscillators sense thermal exchanges of energy with their environment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gender detection is a very important objective to improve efficiency in tasks as speech or speaker recognition, among others. Traditionally gender detection has been focused on fundamental frequency (f0) and cepstral features derived from voiced segments of speech. The methodology presented here consists in obtaining uncorrelated glottal and vocal tract components which are parameterized as mel-frequency coefficients. K-fold and cross-validation using QDA and GMM classifiers showed that better detection rates are reached when glottal source and vocal tract parameters are used in a gender-balanced database of running speech from 340 speakers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El uso universal de síntesis de voz en diferentes aplicaciones requeriría un desarrollo sencillo de las nuevas voces con poca intervención manual. Teniendo en cuenta la cantidad de datos multimedia disponibles en Internet y los medios de comunicación, un objetivo interesante es el desarrollo de herramientas y métodos para construir automáticamente las voces de estilo de varios de ellos. En un trabajo anterior se esbozó una metodología para la construcción de este tipo de herramientas, y se presentaron experimentos preliminares con una base de datos multiestilo. En este artículo investigamos más a fondo esta tarea y proponemos varias mejoras basadas en la selección del número apropiado de hablantes iniciales, el uso o no de filtros de reducción de ruido, el uso de la F0 y el uso de un algoritmo de detección de música. Hemos demostrado que el mejor sistema usando un algoritmo de detección de música disminuye el error de precisión 22,36% relativo para el conjunto de desarrollo y 39,64% relativo para el montaje de ensayo en comparación con el sistema base, sin degradar el factor de mérito. La precisión media para el conjunto de prueba es 90.62% desde 76.18% para los reportajes de 99,93% para los informes meteorológicos.