27 resultados para Física de Plasmas

em Universidad Politécnica de Madrid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Los plasmas granulares son gases total o parcialmente ionizados que, además de iones electrones y átomos neutros, contienen partículas sólidas con carga eléctrica. Dichas partículas cargadas, de tamaño mesoscópico, dan lugar a nuevos fenómenos colectivos con una dinámica característica. Este tipo de plasmas aparecen en sistemas físicos tan diversos como son los reactores de fusión por confinamiento magnético, los sistemas de procesado de semiconductores o en medios astrofísicos. Se presenta una breve introducción divulgativa a esta nueva rama de la física de plasmas que ha tenido un desarrollo espectacular en los últimos años, haciendo énfasis en su carácter multidisciplinar

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiative shock waves play a pivotal role in the transport energy into the stellar medium. This fact has led to many efforts to scale the astrophysical phenomena to accessible laboratory conditions and their study has been highlighted as an area requiring further experimental investigations. Low density material with high atomic mass is suitable to achieve radiative regime, and, therefore, low density xenon gas is commonly used for the medium in which the radiative shock propagates. In this work the averageionization and the thermodynamicregimes of xenonplasmas are determined as functions of the matter density and temperature in a wide range of plasma conditions. The results obtained will be applied to characterize blastwaveslaunched in xenonclusters

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate computation of radioactive opacities is needed in several research fields such as astrophysics, magnetic fusion or ICF target physics analysis, in which the radiation transport is an important feature to determine in detail. Radiation transport plays an important role in the transport of energy in dense plasma and it is strongly influenced by the variation of plasma opacity with density and temperature, as well as, photon energy. In this work we present some new features of the opacity code ATMED [1]. This code has been designed to compute the spectral radioactive opacity as well as the Rosseland and Planck means for single element and mixture plasmas. The model presented is fast, stable and reasonably accurate into its range of application and it can be a useful tool to simulate ICF experiments in plasma laboratory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theoretical X-ray opacities are used in numerous radiative transfer simulations of plasmas at different temperatures and densities, for example astrophysics, fusion, metrology and EUV and X-rays radiation sources. However, there are only a reduced number of laboratories working on the validation of those theoretical results empirically, in particular for high temperature plasmas (mayor que 1eV). One of those limitations comes from the use of broad band EUV- X ray sources to illuminate the plasma which, among other issues, present low reproducibility and repetition rate [1]. Synchrotron radiation facilities are a more appropriate radiation source in that sense, since they provide tunable, reproducible and high resolution photons. Only their ?low? photon intensity for these experiments has prevented researchers to use it for this purpose. However, as new synchrotron facilities improve their photon fluxes, this limitation not longer holds [2]. This work evaluates the experimental requirements to use third generation synchrotron radiation sources for the empirical measurement of opacities of plasmas, proposing a pausible experimental set-up to carry them out. Properties of the laser or discharge generated plasmas to be studied with synchrotron radiation will be discussed in terms of their maximum temperatures, densities and temporal evolution. It will be concluded that there are encouraging reasons to pursue these kind of experiments which will provide with an appropriate benchmark for theoretical opacities

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present experimental and numerical results on intense-laser-pulse-produced fast electron beams transport through aluminum samples, either solid or compressed and heated by laser-induced planar shock propagation. Thanks to absolute K� yield measurements and its very good agreement with results from numerical simulations, we quantify the collisional and resistive fast electron stopping powers: for electron current densities of � 8 � 1010 A=cm2 they reach 1:5 keV=�m and 0:8 keV=�m, respectively. For higher current densities up to 1012 A=cm2, numerical simulations show resistive and collisional energy losses at comparable levels. Analytical estimations predict the resistive stopping power will be kept on the level of 1 keV=�m for electron current densities of 1014 A=cm2, representative of the full-scale conditions in the fast ignition of inertially confined fusion targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundamental research and modelling in plasma atomic physics continue to be essential for providing basic understanding of many different topics relevant to high-energy-density plasmas. The Atomic Physics Group at the Institute of Nuclear Fusion has accumulated experience over the years in developing a collection of computational models and tools for determining the atomic energy structure, ionization balance and radiative properties of, mainly, inertial fusion and laser-produced plasmas in a variety of conditions. In this work, we discuss some of the latest advances and results of our research, with emphasis on inertial fusion and laboratory-astrophysical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some similarities between ion waves in plasmas and gravity waves in incompressible fluids are investigated. It is shown that for zero ion temperature the ion-wave dispersion relation is similar to that of gravity waves in a stratified liquid between rigid, horizontal walls; for large wavelength the ion waves behave as the surface gravity waves of shallow-water theory. The general character of the pattern of ion waves arising in steady plasma flows is analyzed for arbitrary ion temperature, wavelength, and acoustic mach number (which is based on the ion-acoustic speed), and is compared to the pattern of surface gravity waves in steady water flows when surface tension is taken into account.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The one-dimensional motion generated in a cold, infinite, uniform plasma of density na by the absorption, in a certain plane, of a linear pulse of energy per unit time and area = 4>0t/r, 0< t< r, is considered, the analysis allows for thermal conduction and viscosity of ions and electrons, their energy exchange, and an electron heat flux limiter The resulting motion is self-similar and governed by a single nondimensional parameter a«(n0 2T/0)2/3 Detailed asymptotic results are obtained for both a < l and a > l , the general behavior of the solution for arbitrary a is discussed The analysis can be extended to the case of a plasma initially occupying a half-space, and throws light on how to optimize the hydrodynamics of laser fusion plasmas Known approximate results corresponding to motion of a plasma submitted to constant irradiation (<()) are recovered in the present work under appropriate limiting processes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The one-dimensional self-similar motion of an initially cold, half-space plasma of electron density 0,produced by the (anomalous) absorption of a laser pulse of irradiation = (j>0f/T(0< (< T) at the critical density nc(«c/«0=edered. The analysis allows for electron heat conduction and ion-electron energy exchange and retains three dimensionless numbers: e, Zt (ion charge number), and a = (9/c/4m,) (T/C 2n l/4>oKe)213, where k, m, are Boltzmann's constant and the ion mass, and Ke X (electron temperature)5'2 = heat conductivity. If a >e- 4 ' 3 , a deflagration wave separates an isentropic compression with a shock bounding the undisturbed plasma, and an isentropic expansion flow to the vacuum. The structures of these three regions are completely determined; in particular, the Chapman-Jouguet condition is proved and the density behind the deflagration is found. The deflagration-compression thickness ratio is large (small) for a^e- 5 ' 3(a>e- 5 ' 3 ) . The compression to expansion ratio for both energy and thickness is 0(e"2). For Z,- large, a deflagration exists even if a~e~413. Condition a>e~4'3 may be applied to pulses that are not linear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The one-dimensional self-similar motion of an initially cold, half-space plasma of electron density n,produced by the (anomalous) absorption of a laser pulse of irradiation

density nc, is considered; the analysis, which allows for electron heat conduction and ion-electron energy exchange, involves three dimensionless numbers: e = nc/n0 assumed small, Z, (ion charge number), and a parameter adevelops, separating a thermal wave (where convection is negligible) moving into the undisturbed plasma, from a much thinner isothermal flow expanding into the vacuum. For ldensity is so small that the plasma becomes collisionless. The analysis is also invalid for a too small. Using results previously found for a>€~4'3, a qualitative discussion of how plasma behavior changes with a, is given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A previous hydrodynamic model of the expansion of a laser-produced plasma, using classical (Spitzer) heat flux, is reconsidered with a nonlocal heat flux model. The nonlocal law is shown to be valid beyond the range of validity of the classical law, breaking down ultimately, however, in agreement with recent predictions.