17 resultados para Extension taxonomy
em Universidad Politécnica de Madrid
Resumo:
Within the framework of the Collaborative Project for a European Sodium Fast Reactor, the reactor physics group at UPM is working on the extension of its in-house multi-scale advanced deterministic code COBAYA3 to Sodium Fast Reactors (SFR). COBAYA3 is a 3D multigroup neutron kinetics diffusion code that can be used either as a pin-by-pin code or as a stand-alone nodal code by using the analytic nodal diffusion solver ANDES. It is coupled with thermalhydraulics codes such as COBRA-TF and FLICA, allowing transient analysis of LWR at both fine-mesh and coarse-mesh scales. In order to enable also 3D pin-by-pin and nodal coupled NK-TH simulations of SFR, different developments are in progress. This paper presents the first steps towards the application of COBAYA3 to this type of reactors. ANDES solver, already extended to triangular-Z geometry, has been applied to fast reactor steady-state calculations. The required cross section libraries were generated with ERANOS code for several configurations. The limitations encountered in the application of the Analytic Coarse Mesh Finite Difference (ACMFD) method –implemented inside ANDES– to fast reactors are presented and the sensitivity of the method when using a high number of energy groups is studied. ANDES performance is assessed by comparison with the results provided by ERANOS, using a mini-core model in 33 energy groups. Furthermore, a benchmark from the NEA for a small 3D FBR in hexagonal-Z geometry and 4 energy groups is also employed to verify the behavior of the code with few energy groups.
Resumo:
Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is being consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals and is being developed as a practical process amenable to production engineering. The main acknowledged advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Following a short description of the theoretical/computational and experimental methods developed by the authors for the predictive assessment and experimental implementation of LSP treatments, experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (specifically Al and Ti alloys) under different LSP irradiation conditions are presented. In particular, the analysis of the residual stress profiles obtained under different irradiation parameters and the evaluation of the corresponding induced surface properties as roughness and wear resistance are presented.
Resumo:
Competitive abstract machines for Prolog are usually large, intricate, and incorpórate sophisticated optimizations. This makes them difñcult to code, optimize, and, especially, maintain and extend. This is partly due to the fact that efñciency considerations make it necessary to use low-level languages in their implementation. Writing the abstract machine (and ancillary code) in a higher-level language can help harness this inherent complexity. In this paper we show how the semantics of basic components of an efficient virtual machine for Prolog can be described using (a variant of) Prolog which retains much of its semantics. These descriptions are then compiled to C and assembled to build a complete bytecode emulator. Thanks to the high level of the language used and its closeness to Prolog the abstract machine descriptions can be manipulated using standard Prolog compilation and optimization techniques with relative ease. We also show how, by applying program transformations selectively, we obtain abstract machine implementations whose performance can match and even exceed that of highly-tuned, hand-crafted emulators.
Resumo:
We present a new free library for Constraint Logic Programming over Finite Domains, included with the Ciao Prolog system. The library is entirely written in Prolog, leveraging on Ciao's module system and code transformation capabilities in order to achieve a highly modular design without compromising performance. We describe the interface, implementation, and design rationale of each modular component. The library meets several design goals: a high level of modularity, allowing the individual components to be replaced by different versions; highefficiency, being competitive with other TT> implementations; a glass-box approach, so the user can specify new constraints at different levels; and a Prolog implementation, in order to ease the integration with Ciao's code analysis components. The core is built upon two small libraries which implement integer ranges and closures. On top of that, a finite domain variable datatype is defined, taking care of constraint reexecution depending on range changes. These three libraries form what we call the TT> kernel of the library. This TT> kernel is used in turn to implement several higher-level finite domain constraints, specified using indexicals. Together with a labeling module this layer forms what we name the TT> solver. A final level integrates the CLP (J7©) paradigm with our TT> solver. This is achieved using attributed variables and a compiler from the CLP (J7©) language to the set of constraints provided by the solver. It should be noted that the user of the library is encouraged to work in any of those levels as seen convenient: from writing a new range module to enriching the set of TT> constraints by writing new indexicals.
Resumo:
The genus Diplotaxis, comprising 32 or 34 species, plus several additional infraspecific taxa, displays a considerable degree of heterogeneity in the morphology, molecular markers, chromosome numbers and geographical amplitude of the species. The taxonomic relationships within the genus Diplotaxis were investigated by phenetic characterisation of germplasm belonging to 27 taxa of the genus, because there is an increasing interest in Diplotaxis, since some of its species (D. tenuifolia, D. muralis) are gathered or cultivated for human consumption, whereas others are frequent arable weeds (D. erucoides) in many European vineyards. Using a computer-aided vision system, 33 morpho-colorimetric features of seeds were electronically measured. The data were used to implement a statistical classifier, which is able to discriminate the taxa within the genus Diplotaxis, in order to compare the resulting species grouping with the current infrageneric systematics of this genus. Despite the high heterogeneity of the samples, due to the great intra-population variability, the stepwise Linear Discriminant Analysis method, applied to distinguish the groups, was able to reach over 80% correct identification. The results obtained allowed us to confirm the current taxonomic position of most taxa and suggested the taxonomic position of others for reconsideration.
Resumo:
Over the last few decades, the ever-increasing output of scientific publications has led to new challenges to keep up to date with the literature. In the biomedical area, this growth has introduced new requirements for professionals, e.g., physicians, who have to locate the exact papers that they need for their clinical and research work amongst a huge number of publications. Against this backdrop, novel information retrieval methods are even more necessary. While web search engines are widespread in many areas, facilitating access to all kinds of information, additional tools are required to automatically link information retrieved from these engines to specific biomedical applications. In the case of clinical environments, this also means considering aspects such as patient data security and confidentiality or structured contents, e.g., electronic health records (EHRs). In this scenario, we have developed a new tool to facilitate query building to retrieve scientific literature related to EHRs. Results: We have developed CDAPubMed, an open-source web browser extension to integrate EHR features in biomedical literature retrieval approaches. Clinical users can use CDAPubMed to: (i) load patient clinical documents, i.e., EHRs based on the Health Level 7-Clinical Document Architecture Standard (HL7-CDA), (ii) identify relevant terms for scientific literature search in these documents, i.e., Medical Subject Headings (MeSH), automatically driven by the CDAPubMed configuration, which advanced users can optimize to adapt to each specific situation, and (iii) generate and launch literature search queries to a major search engine, i.e., PubMed, to retrieve citations related to the EHR under examination. Conclusions: CDAPubMed is a platform-independent tool designed to facilitate literature searching using keywords contained in specific EHRs. CDAPubMed is visually integrated, as an extension of a widespread web browser, within the standard PubMed interface. It has been tested on a public dataset of HL7-CDA documents, returning significantly fewer citations since queries are focused on characteristics identified within the EHR. For instance, compared with more than 200,000 citations retrieved by breast neoplasm, fewer than ten citations were retrieved when ten patient features were added using CDAPubMed. This is an open source tool that can be freely used for non-profit purposes and integrated with other existing systems.
Resumo:
Various researchers have developed models of conventional H2O–LiBr absorption machines with the aim of predicting their performance. In this paper, the methodology of characteristic equations developed by Hellmann et al. (1998) is applied. This model is able to represent the capacity of single effect absorption chillers and heat pumps by means of simple algebraic equations. An extended characteristic equation based on a characteristic temperature difference has been obtained, considering the facility features. As a result, it is concluded that for adiabatic absorbers a subcooling temperature must be specified. The effect of evaporator overflow has been characterized. Its influence on cooling capacity has been included in the extended characteristic equation. Taking into account the particular design and operation features, a good agreement between experimental performance data and those obtained through the extended characteristic equation has been achieved at off-design operation. This allows its use for simulation and control purposes.
Resumo:
We propose a fuzzy approach to deal with risk analysis for information systems. We extend MAGERIT methodology that valuates the asset dependencies to a fuzzy framework adding fuzzy linguistic terms to valuate the different elements (terminal asset values, asset dependencies as well as the probability of threats and the resulting asset degradation) in risk analysis. Computations are based on the trapezoidal fuzzy numbers associated with these linguistic terms and, finally, the results of these operations are translated into a linguistic term by means of a similarity function.
Resumo:
In an early paper Herbert Mohring (J. Poi Et on , 49 (1961)) presented a model for land rent distribution yielding the well-known result that the price of land must fall with the distance from the city center to offset transportation costs. Our paper is an extension of Mohring's model in which we relax some of his drastic simplifying assumptions. This extended model has been incorporated in a method for economic evaluation of city master plans which has been applied to a Swedish city. In this method the interdependence among housing, heating, and transportation, the dura-bility of urban structures, and the uncertainty of future demand are explicitly considered within a cost-benefit approach. Some empirical results from this pilot study concerning land rent distributions are also presented here.
Resumo:
The software engineering community has paid little attention to non-functional requirements, or quality attributes, compared with studies performed on capture, analysis and validation of functional requirements. This circumstance becomes more intense in the case of distributed applications. In these applications we have to take into account, besides the quality attributes such as correctness, robustness, extendibility, reusability, compatibility, efficiency, portability and ease of use, others like reliability, scalability, transparency, security, interoperability, concurrency, etc. In this work we will show how these last attributes are related to different abstractions that coexist in the problem domain. To achieve this goal, we have established a taxonomy of quality attributes of distributed applications and have determined the set of necessary services to support such attributes.
Resumo:
Reciprocal frame structures, formed by a set of self-supported elements in a closed circuit, have long been used since antiquity to cover large spans with small elements. The roof structure of the Euskalduna conference centre and concert hall extension in Bilbao, covering an irregu- lar geometry of 3000 m2 with a maximum span of 45 m, presented an interesting opportunity to revisit the concept and to apply these classical systems. Furthermore, its analysis and develop- ment led to an interesting discussion on reciprocal frames. They showed great sensitivity of these systems to the local modification of a particular element, establishment of irregular load paths, mobilisation of almost the entire sys- tem when locally applying a punctual load and, finally, its large deformability. Besides, reciprocal frames present particular construction complexities and possibilities due to the moderate length of the structural elements, the predominance of shear-only connec- tions and the necessity of the entire system to be completely erected to guarantee its stability. Euskalduna extension, completed in 2012, is one of the largest and a very par- ticular case of irregular reciprocal frame structures built in the world. It shows the formal possibilities and potentiality of reciprocal frames to respond to free and irregular geometries.
Resumo:
Linked Data assets (RDF triples, graphs, datasets, mappings...) can be object of protection by the intellectual property law, the database law or its access or publication be restricted by other legal reasons (personal data pro- tection, security reasons, etc.). Publishing a rights expression along with the digital asset, allows the rightsholder waiving some or all of the IP and database rights (leaving the work in the public domain), permitting some operations if certain conditions are satisfied (like giving attribution to the author) or simply reminding the audience that some rights are reserved.
Resumo:
Context: The software engineering community is becoming more aware of the need for experimental replications. In spite of the importance of this topic, there is still much inconsistency in the terminology used to describe replications. Objective: Understand the perspectives of empirical researchers about various terms used to characterize replications and propose a consistent taxonomy of terms. Method: A survey followed by plenary discussion during the 2013 International Software Engineering Research Network meeting. Results: We propose a taxonomy which consolidates the disparate terminology. This taxonomy had a high level of agreement among workshop attendees. Conclusion: Consistent terminology is important for any field to progress. This work is the first step in that direction. Additional study and discussion is still necessary.
Resumo:
Los recientes avances tecnológicos han encontrado un potencial campo de explotación en la educación asistida por computador. A finales de los años 90 surgió un nuevo campo de investigación denominado Entornos Virtuales Inteligentes para el Entrenamiento y/o Enseñanza (EVIEs), que combinan dos áreas de gran complejidad: Los Entornos Virtuales (EVs) y los Sistemas de Tutoría Inteligente (STIs). De este modo, los beneficios de los entornos 3D (simulación de entornos de alto riesgo o entornos de difícil uso, etc.) pueden combinarse con aquéllos de un STIs (personalización de materias y presentaciones, adaptación de la estrategia de tutoría a las necesidades del estudiante, etc.) para proporcionar soluciones educativas/de entrenamiento con valores añadidos. El Modelo del Estudiante, núcleo de un SIT, representa el conocimiento y características del estudiante, y refleja el proceso de razonamiento del estudiante. Su complejidad es incluso superior cuando los STIs se aplican a EVs porque las nuevas posibilidades de interacción proporcionadas por estos entornos deben considerarse como nuevos elementos de información clave para el modelado del estudiante, incidiendo en todo el proceso educativo: el camino seguido por el estudiante durante su navegación a través de escenarios 3D; el comportamiento no verbal tal como la dirección de la mirada; nuevos tipos de pistas e instrucciones que el módulo de tutoría puede proporcionar al estudiante; nuevos tipos de preguntas que el estudiante puede formular, etc. Por consiguiente, es necesario que la estructura de los STIs, embebida en el EVIE, se enriquezca con estos aspectos, mientras mantiene una estructura clara, estructurada, y bien definida. La mayoría de las aproximaciones al Modelo del Estudiante en STIs y en IVETs no consideran una taxonomía de posibles conocimientos acerca del estudiante suficientemente completa. Además, la mayoría de ellas sólo tienen validez en ciertos dominios o es difícil su adaptación a diferentes STIs. Para vencer estas limitaciones, hemos propuesto, en el marco de esta tesis doctoral, un nuevo mecanismo de Modelado del Estudiante basado en la Ingeniería Ontológica e inspirado en principios pedagógicos, con un modelo de datos sobre el estudiante amplio y flexible que facilita su adaptación y extensión para diferentes STIs y aplicaciones de aprendizaje, además de un método de diagnóstico con capacidades de razonamiento no monótono. El método de diagnóstico es capaz de inferir el estado de los objetivos de aprendizaje contenidos en el SIT y, a partir de él, el estado de los conocimientos del estudiante durante su proceso de aprendizaje. La aproximación almodelado del estudiante propuesta ha sido implementada e integrada en un agente software (el agente de modelado del estudiante) dentro de una plataforma software existente para el desarrollo de EVIEs denominadaMAEVIF. Esta plataforma ha sido diseñada para ser fácilmente configurable para diferentes aplicaciones de aprendizaje. El modelado del estudiante presentado ha sido implementado e instanciado para dos tipos de entornos de aprendizaje: uno para aprendizaje del uso de interfaces gráficas de usuario en una aplicación software y para un Entorno Virtual para entrenamiento procedimental. Además, se ha desarrollado una metodología para guiar en la aplicación del esta aproximación de modelado del estudiante a cada sistema concreto.---ABSTRACT---Recent technological advances have found a potential field of exploitation in computeraided education. At the end of the 90’s a new research field emerged, the so-called Intelligent Virtual Environments for Training and/or Education (IVETs), which combines two areas of great complexity: Virtual Environments (VE) and Intelligent Tutoring Systems (ITS). In this way, the benefits of 3D environments (simulation of high risk or difficult-to-use environments, etc.) may be combined with those of an ITS (content and presentation customization, adaptation of the tutoring strategy to the student requirements, etc.) in order to provide added value educational/training solutions. The StudentModel, core of an ITS, represents the student’s knowledge and characteristics, and reflects the student’s reasoning process. Its complexity is even higher when the ITSs are applied on VEs because the new interaction possibilities offered by these environments must be considered as new key information pieces for student modelling, impacting all the educational process: the path followed by the student during their navigation through 3D scenarios; non-verbal behavior such as gaze direction; new types of hints or instructions that the tutoring module can provide to the student; new question types that the student can ask, etc. Thus, it is necessary for the ITS structure, which is embedded in the IVET, to be enriched by these aspects, while keeping a clear, structured and well defined architecture. Most approaches to SM on ITSs and IVETs don’t consider a complete enough taxonomy of possible knowledge about the student. In addition, most of them have validity only in certain domains or they are hard to be adapted for different ITSs. In order to overcome these limitations, we have proposed, in the framework of this doctoral research project, a newStudentModeling mechanism that is based onOntological Engineering and inspired on pedagogical principles, with a wide and flexible data model about the student that facilitates its adaptation and extension to different ITSs and learning applications, as well as a rich diagnosis method with non-monotonic reasoning capacities. The diagnosis method is able to infer the state of the learning objectives encompassed by the ITS and, fromit, the student’s knowledge state during the student’s process of learning. The proposed student modelling approach has been implemented and integrated in a software agent (the student modeling agent) within an existing software platform for the development of IVETs called MAEVIF. This platform was designed to be easily configurable for different learning applications. The proposed student modeling has been implemented and it has been instantiated for two types of learning environments: one for learning to use the graphical user interface of a software application and a Virtual Environment for procedural training. In addition, a methodology to guide on the application of this student modeling approach to each specific system has been developed.
Resumo:
El objetivo fundamental de la investigación es el estudio de los fundamentos constructivos de las fábricas históricas de tapia de tierra y mampostería encofrada de las fortificaciones bajomedievales. Ante las incertidumbres detectadas en la datación de estas estructuras y frente al excesivo número de excepciones que quedan fuera de las clasificaciones tradicionalmente empleadas para estudiar este tipo de técnicas, el artículo desarrolla una propuesta de tipología o taxonomía constructiva basada en un sistema abierto. Este sistema nace del análisis de un número significativo de fábricas y atiende a diversos parámetros de control para la completa caracterización de cada fábrica: material, grado de compactación, función constructiva, encofrado, acabado superficial, combinación de materiales y situación, profundidad, formación y sección de los agujales. Cada fábrica se clasifica mediante una etiqueta alfanumérica. El sistema permite establecer tipos constructivos con los que se genera una clasificación cronotipológica constructiva. ABSTRACT The principal aim of the research is the study of the constructive reasons of the historical masonries built with rammed earth and formwork masonry, belonging to late medieval fortifications. Uncertainties have been warned about dating the historical masonries and there are excessive exceptions that do not fall in the rankings traditionally employed to study these techniques. Due to these reasons, the article develops a proposal of constructive typology or taxonomy based in an open system that comes from the analysis of a representative number of masonries and that attends to several control parameters tor the complete characterization of each masonry: material, compaction degree, constructive function, formwork, rendering, combination of materials and, last, the situation, deepness, formation and section of the putlogholes. Each masonry is classified through an alphanumeric label. The system allows establishing several constructive types which it is possible to do a cronotypological and constructive classification.