3 resultados para Explanatory power
em Universidad Politécnica de Madrid
Resumo:
The study examines the Capital Asset Pricing Model (CAPM) for the mining sector using weekly stock returns from 27 companies traded on the New York Stock Exchange (NYSE) or on the London Stock Exchange (LSE) for the period of December 2008 to December 2010. The results support the use of the CAPM for the allocation of risk to companies. Most companies involved in precious metals (particularly gold), which have a beta value less than unity (Table 1), have been actuated as shelter values during the financial crisis. Values of R2 do not shown very explanatory power of fitted models (R2 < 70 %). Estimated coefficients beta are not sufficient to determine the expected returns on securities but the results of the tests conducted on sample data for the period analysed do not appear to clearly reject the CAPM
Resumo:
Wind power time series usually show complex dynamics mainly due to non-linearities related to the wind physics and the power transformation process in wind farms. This article provides an approach to the incorporation of observed local variables (wind speed and direction) to model some of these effects by means of statistical models. To this end, a benchmarking between two different families of varying-coefficient models (regime-switching and conditional parametric models) is carried out. The case of the offshore wind farm of Horns Rev in Denmark has been considered. The analysis is focused on one-step ahead forecasting and a time series resolution of 10 min. It has been found that the local wind direction contributes to model some features of the prevailing winds, such as the impact of the wind direction on the wind variability, whereas the non-linearities related to the power transformation process can be introduced by considering the local wind speed. In both cases, conditional parametric models showed a better performance than the one achieved by the regime-switching strategy. The results attained reinforce the idea that each explanatory variable allows the modelling of different underlying effects in the dynamics of wind power time series.
Resumo:
La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.