3 resultados para Expert information (QUT)

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate detection of liver lesions is of great importance in hepatic surgery planning. Recent studies have shown that the detection rate of liver lesions is significantly higher in gadoxetic acid-enhanced magnetic resonance imaging (Gd–EOB–DTPA-enhanced MRI) than in contrast-enhanced portal-phase computed tomography (CT); however, the latter remains essential because of its high specificity, good performance in estimating liver volumes and better vessel visibility. To characterize liver lesions using both the above image modalities, we propose a multimodal nonrigid registration framework using organ-focused mutual information (OF-MI). This proposal tries to improve mutual information (MI) based registration by adding spatial information, benefiting from the availability of expert liver segmentation in clinical protocols. The incorporation of an additional information channel containing liver segmentation information was studied. A dataset of real clinical images and simulated images was used in the validation process. A Gd–EOB–DTPA-enhanced MRI simulation framework is presented. To evaluate results, warping index errors were calculated for the simulated data, and landmark-based and surface-based errors were calculated for the real data. An improvement of the registration accuracy for OF-MI as compared with MI was found for both simulated and real datasets. Statistical significance of the difference was tested and confirmed in the simulated dataset (p < 0.01).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an approach to adapt dynamically the language models (LMs) used by a speech recognizer that is part of a spoken dialogue system. We have developed a grammar generation strategy that automatically adapts the LMs using the semantic information that the user provides (represented as dialogue concepts), together with the information regarding the intentions of the speaker (inferred by the dialogue manager, and represented as dialogue goals). We carry out the adaptation as a linear interpolation between a background LM, and one or more of the LMs associated to the dialogue elements (concepts or goals) addressed by the user. The interpolation weights between those models are automatically estimated on each dialogue turn, using measures such as the posterior probabilities of concepts and goals, estimated as part of the inference procedure to determine the actions to be carried out. We propose two approaches to handle the LMs related to concepts and goals. Whereas in the first one we estimate a LM for each one of them, in the second one we apply several clustering strategies to group together those elements that share some common properties, and estimate a LM for each cluster. Our evaluation shows how the system can estimate a dynamic model adapted to each dialogue turn, which helps to improve the performance of the speech recognition (up to a 14.82% of relative improvement), which leads to an improvement in both the language understanding and the dialogue management tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smart and green cities are hot topics in current research because people are becoming more conscious about their impact on the environment and the sustainability of their cities as the population increases. Many researchers are searching for mechanisms that can reduce power consumption and pollution in the city environment. This paper addresses the issue of public lighting and how it can be improved in order to achieve a more energy efficient city. This work is focused on making the process of turning the streetlights on and off more intelligent so that they consume less power and cause less light pollution. The proposed solution is comprised of a radar device and an expert system implemented on a low-cost platform based on a DSP. By analyzing the radar echo in both the frequency and time domains, the system is able to detect and identify objects moving in front of it. This information is used to decide whether or not the streetlight should be turned on. Experimental results show that the proposed system can provide hit rates over 80%, promising a good performance. In addition, the proposed solution could be useful in kind of other applications such as intelligent security and surveillance systems and home automation.