6 resultados para Exfoliated graphite

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review of the experimental data for natC(n,c) and 12C(n,c) was made to identify the origin of the natC capture cross sections included in evaluated data libraries and to clarify differences observed in neutronic calculations for graphite moderated reactors using different libraries. The performance of the JEFF-3.1.2 and ENDF/B-VII.1 libraries was verified by comparing results of criticality calculations with experimental results obtained for the BR1 reactor. This reactor is an air-cooled reactor with graphite as moderator and is located at the Belgian Nuclear Research Centre SCK-CEN in Mol (Belgium). The results of this study confirm conclusions drawn from neutronic calculations of the High Temperature Engineering Test Reactor (HTTR) in Japan. Furthermore, both BR1 and HTTR calculations support the capture cross section of 12C at thermal energy which is recommended by Firestone and Révay. Additional criticality calculations were carried out in order to illustrate that the natC thermal capture cross section is important for systems with a large amount of graphite. The present study shows that only the evaluation carried out for JENDL-4.0 reflects the current status of the experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent research has discovered high-grade Au ores in NNE-SSW trending shear zones in metamorphic proterozoic and palaeozoic terranes, some 40 km NW of Santiago de Compostela (NW Spain). The orebodies are bound to late-stage Hercynian structures, mainly due to brittle deformation, which are superimposed on earlier ductile shear zones, cutting through various catazonal lithologies, including ortho- and paragneisses, amphibolites, eclogites, and granites. Ore mineralogy, alteration, and ore textures define a frame whose main features are common to all prospects in the area. Main minerals are arsenopyrite and pyrite - accompanied by quartz, adularia, sericite, + (tourmaline, chlorite, carbonates, graphite), as main gangue minerals - with subordinate amounts of boulangerite, bismuthinite, kobellite, jamesonite, chalcopyrite, marcasite, galena, sphalerite, rutile, titanite, scheelite, beryl, fluorite, and minor native gold, electrum, native bismuth, fahlore, pyrrhotite, mackinawite, etc., defining a meso-catathermal paragenesis. Detailed microscopic study allows the author to propose a general descriptive scheme of textural classification for this type of ore. Most of the ores fill open spaces or veins, seal cracks or cement breccias; disseminated ores with replacement features related to alteration (mainly silicification, sericitization, and adularization) are also observed. Intensive and repeated cataclasis is a common feature of many ores, suggesting successive events of brittle deformation, hydrothermal flow, and ore precipitation. Gold may be transported and accumulated in any of these events, but tends to be concentrated in later ones. The origin of the gold ores is explained in terms of hydrotherreal discharge, associated with mainly brittle deformation and possibly related to granitic magmas, in the global tectonic frame of crustal evolution of West Galicia. The mineralogical and textural study suggests some criteria which will be of practical value for exploration and for ore processing. Ore grades can be improved by flotation of arsenopyrite. Non-conventional methods, such as pressure or bacterial leaching, may subsequently obtain a residue enriched in gold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Preliminary studies have been performed to design a device for nuclear waste transmutation and hydrogen generation based on a gas-cooled pebble bed accelerator driven system, TADSEA (Transmutation Advanced Device for Sustainable Energy Application). In previous studies we have addressed the viability of an ADS Transmutation device that uses as fuel wastes from the existing LWR power plants, encapsulated in graphite in the form of pebble beds, cooled by helium which enables high temperatures (in the order of 1200 K), to generate hydrogen from water either by high temperature electrolysis or by thermochemical cycles. For designing this device several configurations were studied, including several reflectors thickness, to achieve the desired parameters, the transmutation of nuclear waste and the production of 100 MW of thermal power. In this paper new studies performed on deep burn in-core fuel management strategy for LWR waste are presented. The fuel cycle on TADSEA device has been analyzed based on both: driven and transmutation fuel that had been proposed by the General Atomic design of a gas turbine-modular helium reactor. The transmutation results of the three fuel management strategies, using driven, transmutation and standard LWR spent fuel were compared, and several parameters describing the neutron performance of TADSEA nuclear core as the fuel and moderator temperature reactivity coefficients and transmutation chain, are also presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Probabilistic Safety Assessment (PSA) is being developed for a steam-methane reforming hydrogen production plant linked to a High-Temperature Gas Cooled Nuclear Reactor (HTGR). This work is based on the Japan Atomic Energy Research Institute’s (JAERI) High Temperature Test Reactor (HTTR) prototype in Japan. This study has two major objectives: calculate the risk to onsite and offsite individuals, and calculate the frequency of different types of damage to the complex. A simplified HAZOP study was performed to identify initiating events, based on existing studies. The initiating events presented here are methane pipe break, helium pipe break, and PPWC heat exchanger pipe break. Generic data was used for the fault tree analysis and the initiating event frequency. Saphire was used for the PSA analysis. The results show that the average frequency of an accident at this complex is 2.5E-06, which is divided into the various end states. The dominant sequences result in graphite oxidation which does not pose a health risk to the population. The dominant sequences that could affect the population are those that result in a methane explosion and occur 6.6E-8/year, while the other sequences are much less frequent. The health risk presents itself if there are people in the vicinity who could be affected by the explosion. This analysis also demonstrates that an accident in one of the plants has little effect on the other. This is true given the design base distance between the plants, the fact that the reactor is underground, as well as other safety characteristics of the HTGR. Sensitivity studies are being performed in order to determine where additional and improved data is needed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Positive composite electrodes having LiNi0.5Mn1.5O4 spinel as active material, a blend of graphite and carbon black for increasing the electrode electrical conductivity and either polyvinyldenefluoride (PVDF) or a blend of PVDF with a small amount of Teflon® (1 wt%) for building up the electrode. They have been processed by tape casting on an aluminum foil as current collector using the doctor blade technique. Additionally, the component blends were either sonicated or not, and the processed electrodes were compacted or not under subsequent cold pressing. Composites electrodes with high weight, up to 17 mg/cm2, were prepared and studied as positive electrodes for lithium-ion batteries. The addition of Teflon® and the application of the sonication treatment lead to uniform electrodes that are well-adhered to the aluminum foil. Both parameters contribute to improve the capacity drained at high rates (5C). Additional compaction of the electrode/aluminum assemblies remarkably enhances the electrode rate capabilities. At 5C rate, remarkable capacity retentions between 80% and 90% are found for electrodes with weights in the range 3–17 mg/cm2, having Teflon® in their formulation, prepared after sonication of their component blends and compacted under 2 tonnes/cm2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal, mechanical, and adhesive properties of nanoclay-modified adhesives were investigated. Two organically modified montmorillonites: Cloisite 93A (C93A) and Nanomer I.30E (I.30E) were used as reinforcement of an epoxy adhesive. C93A and I.30E are modified with tertiary and primary alkyl ammonium cations, respectively. The aim was to study the influence of the organoclays on the curing, and on the mechanical and adhesive properties of the nanocomposites. A specific goal was to compare their behavior with that of Cloisite30B/epoxy and Cloisite15A/ epoxy nanocomposites that we have previously studied. Both C30B and C15A are modified with quaternary alkyl ammonium cations. Differential scanning calorimetry results showed that the clays accelerate the curing reaction, an effect that is related to the chemical structure of the ammonium cations. The three Cloisite/nanocomposites showed intercalated clay structures,the interlayer distance was independent of the clay content. The I.30E/epoxy nanocomposites presented exfoliated structure due to the catalytic effect of the organic modifier. Clay-epoxy nanocompo-sites showed lower glass transition temperature (Tg) and higher values of storage modulus than neat epoxy thermoset, with no significant differences between exfoliated or intercalated nanocom-posites. The shear strength of aluminum joints using clay/epoxy adhesives was lower than with the neat epoxy adhesive. The wáter aging was less damaging for joints with I.30E/epoxy adhesive.