4 resultados para Excitonic binding energy

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fe–Cr based alloys are the leading structural material candidates in the design of next generation reactors due to their high resistance to swelling and corrosion. Despite these good properties there are others, such as embrittlement, which require a higher level of understanding in order to improve aspects such as safety or lifetime of the reactors. The addition of Cr improves the behavior of the steels under irradiation, but not in a monotonic way. Therefore, understanding the changes in the Fe–Cr based alloys microstructure induced by irradiation and the role played by the alloying element (Cr) is needed in order to predict the response of these materials under the extreme conditions they are going to support. In this work we perform a study of the effect of Cr concentration in a bcc Fe–Cr matrix on formation and binding energies of vacancy clusters up to 5 units. The dependence of the calculated formation and binding energy is investigated with two empirical interatomic potentials specially developed to study radiation damage in Fe–Cr alloys. Results are very similar for both potentials showing an increase of the defect stability with the cluster size and no real dependence on Cr concentration for the binding energy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electronic structure and properties of the orthorhombic phase of the CH 3 NH 3 PbI 3 perovskite are computed with density functional theory. The structure, optimized using a van der Waals functional, reproduces closely the unit cell volume. The experimental band gap is reproduced accurately by combining spin-orbit effects and a hybrid functional in which the fraction of exact exchange is tuned self-consistently to the optical dielectric constant. Including spin-orbit coupling strongly reduces the anisotropy of the effective mass tensor, predicting a low electron effective mass in all crystal directions. The computed binding energy of the unrelaxed exciton agrees with experimental data, and the values found imply a fast exciton dissociation at ambient temperature. Also polaron masses for the separated carriers are estimated. The values of all these parameters agree with recent indications that fast dynamics and large carrier diffusion lengths are key in the high photovoltaic efficiencies shown by these materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction - SiO 2 •Simple composition and structure; Crystalline and amorphous phases •Adequate for atomistic simulations •Abundant in nature. Relevant for many technologies -Irradiation with swift heavy ions: •They provide EXTREME physical conditions •Very high excitation densities similar to high power lasers •Very high local temperatures •By playing with high energy and heavy mass (SHI) : •One can go from low electronic excitations (collisions regime) to high electronic excitations (electronic regime

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Centro de Micro-Análisis de Materiales (CMAM) in the Universidad Autónoma de Madrid is carrying out an extensive research program on the processes induced by high energy heavy mass ions (SHI) on dielectric materials and their photonic applications [1?21]. A significant part of this activity constitutes a relevant contribution to the scientific program associated to the TECHNOFUSION project. It is performed in collaboration with the Instituto de Fusion Nuclear at the UPM, the CIEMAT, the Departamento de Física de Materiales at UAM and several other national institutions (INTA) and international laboratories (GANIL, France), Legnaro Italy, Grenoble?. The program has led to a large number of publications in reputed international journals.