22 resultados para Evolutionary multiobjective optimization

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As one of the most competitive approaches to multi-objective optimization, evolutionary algorithms have been shown to obtain very good results for many realworld multi-objective problems. One of the issues that can affect the performance of these algorithms is the uncertainty in the quality of the solutions which is usually represented with the noise in the objective values. Therefore, handling noisy objectives in evolutionary multi-objective optimization algorithms becomes very important and is gaining more attention in recent years. In this paper we present ?-degree Pareto dominance relation for ordering the solutions in multi-objective optimization when the values of the objective functions are given as intervals. Based on this dominance relation, we propose an adaptation of the non-dominated sorting algorithm for ranking the solutions. This ranking method is then used in a standardmulti-objective evolutionary algorithm and a recently proposed novel multi-objective estimation of distribution algorithm based on joint variable-objective probabilistic modeling, and applied to a set of multi-objective problems with different levels of independent noise. The experimental results show that the use of the proposed method for solution ranking allows to approximate Pareto sets which are considerably better than those obtained when using the dominance probability-based ranking method, which is one of the main methods for noise handling in multi-objective optimization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, there has been continuing interest in the participation of university research groups in space technology studies by means of their own microsatellites. The involvement in such projects has some inherent challenges, such as limited budget and facilities. Also, due to the fact that the main objective of these projects is for educational purposes, usually there are uncertainties regarding their in orbit mission and scientific payloads at the early phases of the project. On the other hand, there are predetermined limitations for their mass and volume budgets owing to the fact that most of them are launched as an auxiliary payload in which the launch cost is reduced considerably. The satellite structure subsystem is the one which is most affected by the launcher constraints. This can affect different aspects, including dimensions, strength and frequency requirements. In this paper, the main focus is on developing a structural design sizing tool containing not only the primary structures properties as variables but also the system level variables such as payload mass budget and satellite total mass and dimensions. This approach enables the design team to obtain better insight into the design in an extended design envelope. The structural design sizing tool is based on analytical structural design formulas and appropriate assumptions including both static and dynamic models of the satellite. Finally, a Genetic Algorithm (GA) multiobjective optimization is applied to the design space. The result is a Pareto-optimal based on two objectives, minimum satellite total mass and maximum payload mass budget, which gives a useful insight to the design team at the early phases of the design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods for predicting the shear capacity of FRP shear strengthened RC beams assume the traditional approach of superimposing the contribution of the FRP reinforcing to the contributions from the reinforcing steel and the concrete. These methods become the basis for most guides for the design of externally bonded FRP systems for strengthening concrete structures. The variations among them come from the way they account for the effect of basic shear design parameters on shear capacity. This paper presents a simple method for defining improved equations to calculate the shear capacity of reinforced concrete beams externally shear strengthened with FRP. For the first time, the equations are obtained in a multiobjective optimization framework solved by using genetic algorithms, resulting from considering simultaneously the experimental results of beams with and without FRP external reinforcement. The performance of the new proposed equations is compared to the predictions with some of the current shear design guidelines for strengthening concrete structures using FRPs. The proposed procedure is also reformulated as a constrained optimization problem to provide more conservative shear predictions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Esta tesis se ha realizado en el contexto del proyecto UPMSat-2, que es un microsatélite diseñado, construido y operado por el Instituto Universitario de Microgravedad "Ignacio Da Riva" (IDR / UPM) de la Universidad Politécnica de Madrid. Aplicación de la metodología Ingeniería Concurrente (Concurrent Engineering: CE) en el marco de la aplicación de diseño multidisciplinar (Multidisciplinary Design Optimization: MDO) es uno de los principales objetivos del presente trabajo. En los últimos años, ha habido un interés continuo en la participación de los grupos de investigación de las universidades en los estudios de la tecnología espacial a través de sus propios microsatélites. La participación en este tipo de proyectos tiene algunos desafíos inherentes, tales como presupuestos y servicios limitados. Además, debido al hecho de que el objetivo principal de estos proyectos es fundamentalmente educativo, por lo general hay incertidumbres en cuanto a su misión en órbita y cargas útiles en las primeras fases del proyecto. Por otro lado, existen limitaciones predeterminadas para sus presupuestos de masa, volumen y energía, debido al hecho de que la mayoría de ellos están considerados como una carga útil auxiliar para el lanzamiento. De este modo, el costo de lanzamiento se reduce considerablemente. En este contexto, el subsistema estructural del satélite es uno de los más afectados por las restricciones que impone el lanzador. Esto puede afectar a diferentes aspectos, incluyendo las dimensiones, la resistencia y los requisitos de frecuencia. En la primera parte de esta tesis, la atención se centra en el desarrollo de una herramienta de diseño del subsistema estructural que evalúa, no sólo las propiedades de la estructura primaria como variables, sino también algunas variables de nivel de sistema del satélite, como la masa de la carga útil y la masa y las dimensiones extremas de satélite. Este enfoque permite que el equipo de diseño obtenga una mejor visión del diseño en un espacio de diseño extendido. La herramienta de diseño estructural se basa en las fórmulas y los supuestos apropiados, incluyendo los modelos estáticos y dinámicos del satélite. Un algoritmo genético (Genetic Algorithm: GA) se aplica al espacio de diseño para optimizaciones de objetivo único y también multiobjetivo. El resultado de la optimización multiobjetivo es un Pareto-optimal basado en dos objetivo, la masa total de satélites mínimo y el máximo presupuesto de masa de carga útil. Por otro lado, la aplicación de los microsatélites en misiones espaciales es de interés por su menor coste y tiempo de desarrollo. La gran necesidad de las aplicaciones de teledetección es un fuerte impulsor de su popularidad en este tipo de misiones espaciales. Las misiones de tele-observación por satélite son esenciales para la investigación de los recursos de la tierra y el medio ambiente. En estas misiones existen interrelaciones estrechas entre diferentes requisitos como la altitud orbital, tiempo de revisita, el ciclo de vida y la resolución. Además, todos estos requisitos puede afectar a toda las características de diseño. Durante los últimos años la aplicación de CE en las misiones espaciales ha demostrado una gran ventaja para llegar al diseño óptimo, teniendo en cuenta tanto el rendimiento y el costo del proyecto. Un ejemplo bien conocido de la aplicación de CE es la CDF (Facilidad Diseño Concurrente) de la ESA (Agencia Espacial Europea). Está claro que para los proyectos de microsatélites universitarios tener o desarrollar una instalación de este tipo parece estar más allá de las capacidades del proyecto. Sin embargo, la práctica de la CE a cualquier escala puede ser beneficiosa para los microsatélites universitarios también. En la segunda parte de esta tesis, la atención se centra en el desarrollo de una estructura de optimización de diseño multidisciplinar (Multidisciplinary Design Optimization: MDO) aplicable a la fase de diseño conceptual de microsatélites de teledetección. Este enfoque permite que el equipo de diseño conozca la interacción entre las diferentes variables de diseño. El esquema MDO presentado no sólo incluye variables de nivel de sistema, tales como la masa total del satélite y la potencia total, sino también los requisitos de la misión como la resolución y tiempo de revisita. El proceso de diseño de microsatélites se divide en tres disciplinas; a) diseño de órbita, b) diseño de carga útil y c) diseño de plataforma. En primer lugar, se calculan diferentes parámetros de misión para un rango práctico de órbitas helio-síncronas (sun-synchronous orbits: SS-Os). Luego, según los parámetros orbitales y los datos de un instrumento como referencia, se calcula la masa y la potencia de la carga útil. El diseño de la plataforma del satélite se estima a partir de los datos de la masa y potencia de los diferentes subsistemas utilizando relaciones empíricas de diseño. El diseño del subsistema de potencia se realiza teniendo en cuenta variables de diseño más detalladas, como el escenario de la misión y diferentes tipos de células solares y baterías. El escenario se selecciona, de modo de obtener una banda de cobertura sobre la superficie terrestre paralelo al Ecuador después de cada intervalo de revisita. Con el objetivo de evaluar las interrelaciones entre las diferentes variables en el espacio de diseño, todas las disciplinas de diseño mencionados se combinan en un código unificado. Por último, una forma básica de MDO se ajusta a la herramienta de diseño de sistema de satélite. La optimización del diseño se realiza por medio de un GA con el único objetivo de minimizar la masa total de microsatélite. Según los resultados obtenidos de la aplicación del MDO, existen diferentes puntos de diseños óptimos, pero con diferentes variables de misión. Este análisis demuestra la aplicabilidad de MDO para los estudios de ingeniería de sistema en la fase de diseño conceptual en este tipo de proyectos. La principal conclusión de esta tesis, es que el diseño clásico de los satélites que por lo general comienza con la definición de la misión y la carga útil no es necesariamente la mejor metodología para todos los proyectos de satélites. Un microsatélite universitario, es un ejemplo de este tipo de proyectos. Por eso, se han desarrollado un conjunto de herramientas de diseño para encarar los estudios de la fase inicial de diseño. Este conjunto de herramientas incluye diferentes disciplinas de diseño centrados en el subsistema estructural y teniendo en cuenta una carga útil desconocida a priori. Los resultados demuestran que la mínima masa total del satélite y la máxima masa disponible para una carga útil desconocida a priori, son objetivos conflictivos. En este contexto para encontrar un Pareto-optimal se ha aplicado una optimización multiobjetivo. Según los resultados se concluye que la selección de la masa total por satélite en el rango de 40-60 kg puede considerarse como óptima para un proyecto de microsatélites universitario con carga útil desconocida a priori. También la metodología CE se ha aplicado al proceso de diseño conceptual de microsatélites de teledetección. Los resultados de la aplicación del CE proporcionan una clara comprensión de la interacción entre los requisitos de diseño de sistemas de satélites, tales como la masa total del microsatélite y la potencia y los requisitos de la misión como la resolución y el tiempo de revisita. La aplicación de MDO se hace con la minimización de la masa total de microsatélite. Los resultados de la aplicación de MDO aclaran la relación clara entre los diferentes requisitos de diseño del sistema y de misión, así como que permiten seleccionar las líneas de base para el diseño óptimo con el objetivo seleccionado en las primeras fase de diseño. ABSTRACT This thesis is done in the context of UPMSat-2 project, which is a microsatellite under design and manufacturing at the Instituto Universitario de Microgravedad “Ignacio Da Riva” (IDR/UPM) of the Universidad Politécnica de Madrid. Application of Concurrent Engineering (CE) methodology in the framework of Multidisciplinary Design application (MDO) is one of the main objectives of the present work. In recent years, there has been continuing interest in the participation of university research groups in space technology studies by means of their own microsatellites. The involvement in such projects has some inherent challenges, such as limited budget and facilities. Also, due to the fact that the main objective of these projects is for educational purposes, usually there are uncertainties regarding their in orbit mission and scientific payloads at the early phases of the project. On the other hand, there are predetermined limitations for their mass and volume budgets owing to the fact that most of them are launched as an auxiliary payload in which the launch cost is reduced considerably. The satellite structure subsystem is the one which is most affected by the launcher constraints. This can affect different aspects, including dimensions, strength and frequency requirements. In the first part of this thesis, the main focus is on developing a structural design sizing tool containing not only the primary structures properties as variables but also the satellite system level variables such as payload mass budget and satellite total mass and dimensions. This approach enables the design team to obtain better insight into the design in an extended design envelope. The structural design sizing tool is based on the analytical structural design formulas and appropriate assumptions including both static and dynamic models of the satellite. A Genetic Algorithm (GA) is applied to the design space for both single and multiobejective optimizations. The result of the multiobjective optimization is a Pareto-optimal based on two objectives, minimum satellite total mass and maximum payload mass budget. On the other hand, the application of the microsatellites is of interest for their less cost and response time. The high need for the remote sensing applications is a strong driver of their popularity in space missions. The satellite remote sensing missions are essential for long term research around the condition of the earth resources and environment. In remote sensing missions there are tight interrelations between different requirements such as orbital altitude, revisit time, mission cycle life and spatial resolution. Also, all of these requirements can affect the whole design characteristics. During the last years application of the CE in the space missions has demonstrated a great advantage to reach the optimum design base lines considering both the performance and the cost of the project. A well-known example of CE application is ESA (European Space Agency) CDF (Concurrent Design Facility). It is clear that for the university-class microsatellite projects having or developing such a facility seems beyond the project capabilities. Nevertheless practicing CE at any scale can be beneficiary for the university-class microsatellite projects. In the second part of this thesis, the main focus is on developing a MDO framework applicable to the conceptual design phase of the remote sensing microsatellites. This approach enables the design team to evaluate the interaction between the different system design variables. The presented MDO framework contains not only the system level variables such as the satellite total mass and total power, but also the mission requirements like the spatial resolution and the revisit time. The microsatellite sizing process is divided into the three major design disciplines; a) orbit design, b) payload sizing and c) bus sizing. First, different mission parameters for a practical range of sun-synchronous orbits (SS-Os) are calculated. Then, according to the orbital parameters and a reference remote sensing instrument, mass and power of the payload are calculated. Satellite bus sizing is done based on mass and power calculation of the different subsystems using design estimation relationships. In the satellite bus sizing, the power subsystem design is realized by considering more detailed design variables including a mission scenario and different types of solar cells and batteries. The mission scenario is selected in order to obtain a coverage belt on the earth surface parallel to the earth equatorial after each revisit time. In order to evaluate the interrelations between the different variables inside the design space all the mentioned design disciplines are combined in a unified code. The integrated satellite system sizing tool developed in this section is considered as an application of the CE to the conceptual design of the remote sensing microsatellite projects. Finally, in order to apply the MDO methodology to the design problem, a basic MDO framework is adjusted to the developed satellite system design tool. Design optimization is done by means of a GA single objective algorithm with the objective function as minimizing the microsatellite total mass. According to the results of MDO application, there exist different optimum design points all with the minimum satellite total mass but with different mission variables. This output demonstrates the successful applicability of MDO approach for system engineering trade-off studies at the conceptual design phase of the design in such projects. The main conclusion of this thesis is that the classical design approach for the satellite design which usually starts with the mission and payload definition is not necessarily the best approach for all of the satellite projects. The university-class microsatellite is an example for such projects. Due to this fact an integrated satellite sizing tool including different design disciplines focusing on the structural subsystem and considering unknown payload is developed. According to the results the satellite total mass and available mass for the unknown payload are conflictive objectives. In order to find the Pareto-optimal a multiobjective GA optimization is conducted. Based on the optimization results it is concluded that selecting the satellite total mass in the range of 40-60 kg can be considered as an optimum approach for a university-class microsatellite project with unknown payload(s). Also, the CE methodology is applied to the remote sensing microsatellites conceptual design process. The results of CE application provide a clear understanding of the interaction between satellite system design requirements such as satellite total mass and power and the satellite mission variables such as revisit time and spatial resolution. The MDO application is done with the total mass minimization of a remote sensing satellite. The results from the MDO application clarify the unclear relationship between different system and mission design variables as well as the optimum design base lines according to the selected objective during the initial design phases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the question of maximizing classifier accuracy for classifying task-related mental activity from Magnetoencelophalography (MEG) data. We propose the use of different sources of information and introduce an automatic channel selection procedure. To determine an informative set of channels, our approach combines a variety of machine learning algorithms: feature subset selection methods, classifiers based on regularized logistic regression, information fusion, and multiobjective optimization based on probabilistic modeling of the search space. The experimental results show that our proposal is able to improve classification accuracy compared to approaches whose classifiers use only one type of MEG information or for which the set of channels is fixed a priori.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El objetivo de esta tesis es la caracterización de la generación térmica representativa de la existente en la realidad, para posteriormente proceder a su modelización y simulación integrándolas en una red eléctrica tipo y llevar a cabo estudios de optimización multiobjetivo económico medioambiental. Para ello, en primera instancia se analiza el contexto energético y eléctrico actual, y más concretamente el peninsular, en el que habiendo desaparecido las centrales de fuelóleo, sólo quedan ciclos combinados y centrales de carbón de distinto rango. Seguidamente se lleva a cabo un análisis de los principales impactos medioambientales de las centrales eléctricas basadas en combustión, representados sobre todo por sus emisiones de CO2, SO2 y NOx, de las medidas de control y mitigación de las mismas y de la normativa que les aplica. A continuación, a partir de las características de los combustibles y de la información de los consumos específicos, se caracterizan los grupos térmicos frente a las funciones relevantes que definen su comportamiento energético, económico y medioambiental, en términos de funciones de salida horarias dependiendo de la carga. Se tiene en cuenta la posibilidad de desnitrificación y desulfuración. Dado que las funciones objetivo son múltiples, y que están en conflicto unas con otras, se ha optado por usar métodos multiobjetivo que son capaces de identificar el contorno de puntos óptimos o frente de Pareto, en los que tomando una solución no existe otra que lo mejore en alguna de las funciones objetivo sin empeorarlo en otra. Se analizaron varios métodos de optimización multiobjetivo y se seleccionó el de las ε constraint, capaz de encontrar frentes no convexos y cuya optimalidad estricta se puede comprobar. Se integró una representación equilibrada de centrales de antracita, hulla nacional e importada, lignito y ciclos combinados en la red tipo IEEE-57, en la que se puede trabajar con siete centrales sin distorsionar demasiado las potencias nominales reales de los grupos, y se programó en Matlab la resolución de flujos óptimos de carga en alterna con el método multiobjetivo integrado. Se identifican los frentes de Pareto de las combinaciones de coste y cada uno de los tres tipos de emisión, y también el de los cuatro objetivos juntos, obteniendo los resultados de costes óptimos del sistema para todo el rango de emisiones. Se valora cuánto le cuesta al sistema reducir una tonelada adicional de cualquier tipo de emisión a base de desplazarse a combinaciones de generación más limpias. Los puntos encontrados aseguran que bajo unas determinadas emisiones no pueden ser mejorados económicamente, o que atendiendo a ese coste no se puede reducir más allá el sistema en lo relativo a emisiones. También se indica cómo usar los frentes de Pareto para trazar estrategias óptimas de producción ante cambios horarios de carga. ABSTRACT The aim of this thesis is the characterization of electrical generation based on combustion processes representative of the actual power plants, for the latter modelling and simulation of an electrical grid and the development of economic- environmental multiobjective optimization studies. In this line, the first step taken is the analysis of the current energetic and electrical framework, focused on the peninsular one, where the fuel power plants have been shut down, and the only ones remaining are coal units of different types and combined cycle. Then it is carried out an analysis of the main environmental impacts of the thermal power plants, represented basically by the emissions of CO2, SO2 y NOx, their control and reduction measures and the applicable regulations. Next, based on the combustibles properties and the information about the units heat rates, the different power plants are characterized in relation to the outstanding functions that define their energy, economic and environmental behaviour, in terms of hourly output functions depending on their load. Optional denitrification and desulfurization is considered. Given that there are multiple objectives, and that they go in conflictive directions, it has been decided the use of multiobjective techniques, that have the ability of identifying the optimal points set, which is called the Pareto front, where taken a solution there will be no other point that can beat the former in an objective without worsening it in another objective. Several multiobjective optimization methods were analysed and pondered, selecting the ε constraint technique, which is able to find no convex fronts and it is opened to be tested to prove the strict Pareto optimality of the obtained solutions. A balanced representation of the thermal power plants, formed by anthracite, lignite, bituminous national and imported coals and combined cycle, was integrated in the IEEE-57 network case. This system was selected because it deals with a total power that will admit seven units without distorting significantly the actual size of the power plants. Next, an AC optimal power flow with the multiobjective method implemented in the routines was programmed. The Pareto fronts of the combination of operative costs with each of the three emissions functions were found, and also the front of all of them together. The optimal production costs of the system for all the emissions range were obtained. It is also evaluated the cost of reducing an additional emission ton of any of the emissions when the optimal production mix is displaced towards cleaner points. The obtained solutions assure that under a determined level of emissions they cannot be improved economically or, in the other way, at a determined cost it cannot be found points of lesser emissions. The Pareto fronts are also applied for the search of optimal strategic paths to follow the hourly load changes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nowadays computing platforms consist of a very large number of components that require to be supplied with diferent voltage levels and power requirements. Even a very small platform, like a handheld computer, may contain more than twenty diferent loads and voltage regulators. The power delivery designers of these systems are required to provide, in a very short time, the right power architecture that optimizes the performance, meets electrical specifications plus cost and size targets. The appropriate selection of the architecture and converters directly defines the performance of a given solution. Therefore, the designer needs to be able to evaluate a significant number of options in order to know with good certainty whether the selected solutions meet the size, energy eficiency and cost targets. The design dificulties of selecting the right solution arise due to the wide range of power conversion products provided by diferent manufacturers. These products range from discrete components (to build converters) to complete power conversion modules that employ diferent manufacturing technologies. Consequently, in most cases it is not possible to analyze all the alternatives (combinations of power architectures and converters) that can be built. The designer has to select a limited number of converters in order to simplify the analysis. In this thesis, in order to overcome the mentioned dificulties, a new design methodology for power supply systems is proposed. This methodology integrates evolutionary computation techniques in order to make possible analyzing a large number of possibilities. This exhaustive analysis helps the designer to quickly define a set of feasible solutions and select the best trade-off in performance according to each application. The proposed approach consists of two key steps, one for the automatic generation of architectures and other for the optimized selection of components. In this thesis are detailed the implementation of these two steps. The usefulness of the methodology is corroborated by contrasting the results using real problems and experiments designed to test the limits of the algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies feature subset selection in classification using a multiobjective estimation of distribution algorithm. We consider six functions, namely area under ROC curve, sensitivity, specificity, precision, F1 measure and Brier score, for evaluation of feature subsets and as the objectives of the problem. One of the characteristics of these objective functions is the existence of noise in their values that should be appropriately handled during optimization. Our proposed algorithm consists of two major techniques which are specially designed for the feature subset selection problem. The first one is a solution ranking method based on interval values to handle the noise in the objectives of this problem. The second one is a model estimation method for learning a joint probabilistic model of objectives and variables which is used to generate new solutions and advance through the search space. To simplify model estimation, l1 regularized regression is used to select a subset of problem variables before model learning. The proposed algorithm is compared with a well-known ranking method for interval-valued objectives and a standard multiobjective genetic algorithm. Particularly, the effects of the two new techniques are experimentally investigated. The experimental results show that the proposed algorithm is able to obtain comparable or better performance on the tested datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social behaviour is mainly based on swarm colonies, in which each individual shares its knowledge about the environment with other individuals to get optimal solutions. Such co-operative model differs from competitive models in the way that individuals die and are born by combining information of alive ones. This paper presents the particle swarm optimization with differential evolution algorithm in order to train a neural network instead the classic back propagation algorithm. The performance of a neural network for particular problems is critically dependant on the choice of the processing elements, the net architecture and the learning algorithm. This work is focused in the development of methods for the evolutionary design of artificial neural networks. This paper focuses in optimizing the topology and structure of connectivity for these networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many macroscopic properties: hardness, corrosion, catalytic activity, etc. are directly related to the surface structure, that is, to the position and chemical identity of the outermost atoms of the material. Current experimental techniques for its determination produce a “signature” from which the structure must be inferred by solving an inverse problem: a solution is proposed, its corresponding signature computed and then compared to the experiment. This is a challenging optimization problem where the search space and the number of local minima grows exponentially with the number of atoms, hence its solution cannot be achieved for arbitrarily large structures. Nowadays, it is solved by using a mixture of human knowledge and local search techniques: an expert proposes a solution that is refined using a local minimizer. If the outcome does not fit the experiment, a new solution must be proposed again. Solving a small surface can take from days to weeks of this trial and error method. Here we describe our ongoing work in its solution. We use an hybrid algorithm that mixes evolutionary techniques with trusted region methods and reuses knowledge gained during the execution to avoid repeated search of structures. Its parallelization produces good results even when not requiring the gathering of the full population, hence it can be used in loosely coupled environments such as grids. With this algorithm, the solution of test cases that previously took weeks of expert time can be automatically solved in a day or two of uniprocessor time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A genetic algorithm (GA) is employed for the multi-objective shape optimization of the nose of a high-speed train. Aerodynamic problems observed at high speeds become still more relevant when traveling along a tunnel. The objective is to minimize both the aerodynamic drag and the amplitude of the pressure gradient of the compression wave when a train enters a tunnel. The main drawback of GA is the large number of evaluations need in the optimization process. Metamodels-based optimization is considered to overcome such problem. As a result, an explicit relationship between pressure gradient and geometrical parameters is obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, a novel approach to deal with the design of in-building wireless networks deployments is proposed. This approach known as MOQZEA (Multiobjective Quality Zone Based Evolutionary Algorithm) is a hybr id evolutionary algorithm adapted to use a novel fitness function, based on the definition of quality zones for the different objective functions considered. This approach is conceived to solve wireless network design problems without previous information of the required number of transmitters, considering simultaneously a high number of objective functions and optimizing multiple configuration parameters of the transmitters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complexity of planning a wireless sensor network is dependent on the aspects of optimization and on the application requirements. Even though Murphy's Law is applied everywhere in reality, a good planning algorithm will assist the designers to be aware of the short plates of their design and to improve them before the problems being exposed at the real deployment. A 3D multi-objective planning algorithm is proposed in this paper to provide solutions on the locations of nodes and their properties. It employs a developed ray-tracing scheme for sensing signal and radio propagation modelling. Therefore it is sensitive to the obstacles and makes the models of sensing coverage and link quality more practical compared with other heuristics that use ideal unit-disk models. The proposed algorithm aims at reaching an overall optimization on hardware cost, coverage, link quality and lifetime. Thus each of those metrics are modelled and normalized to compose a desirability function. Evolutionary algorithm is designed to efficiently tackle this NP-hard multi-objective optimization problem. The proposed algorithm is applicable for both indoor and outdoor 3D scenarios. Different parameters that affect the performance are analyzed through extensive experiments; two state-of-the-art algorithms are rebuilt and tested with the same configuration as that of the proposed algorithm. The results indicate that the proposed algorithm converges efficiently within 600 iterations and performs better than the compared heuristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to develop an automated tool for the optimization of turbomachinery blades founded on an evolutionary strategy. This optimization scheme will serve to deal with supersonic blades cascades for application to Organic Rankine Cycle (ORC) turbines. The blade geometry is defined using parameterization techniques based on B-Splines curves, that allow to have a local control of the shape. The location in space of the control points of the B-Spline curve define the design variables of the optimization problem. In the present work, the performance of the blade shape is assessed by means of fully-turbulent flow simulations performed with a CFD package, in which a look-up table method is applied to ensure an accurate thermodynamic treatment. The solver is set along with the optimization tool to determine the optimal shape of the blade. As only blade-to-blade effects are of interest in this study, quasi-3D calculations are performed, and a single-objective evolutionary strategy is applied to the optimization. As a result, a non-intrusive tool, with no need for gradients definition, is developed. The computational cost is reduced by the use of surrogate models. A Gaussian interpolation scheme (Kriging model) is applied for the estimated n-dimensional function, and a surrogate-based local optimization strategy is proved to yield an accurate way for optimization. In particular, the present optimization scheme has been applied to the re-design of a supersonic stator cascade of an axial-flow turbine. In this design exercise very strong shock waves are generated in the rear blade suction side and shock-boundary layer interaction mechanisms occur. A significant efficiency improvement as a consequence of a more uniform flow at the blade outlet section of the stator is achieved. This is also expected to provide beneficial effects on the design of a subsequent downstream rotor. The method provides an improvement to gradient-based methods and an optimized blade geometry is easily achieved using the genetic algorithm.