7 resultados para Evasión tributaria

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aparte de los razonamientos técnicos que se abordan en el artículo, el usar gasóleo agrícola (el denominado B) en vehículos no autorizados supone una infracción legal, una falta contra la hacienda pública. Concretamente se trata de una evasión de impuestos ya que el gasóleo agrícola se encuentra bonificado por el gobierno, es decir, se le suprimen una serie de impuestos para que al usuario autorizado, agricultor en este caso, le salga algo más barato. Pero ¿técnicamente, se puede usar gasóleo B en vehículos no agrícolas?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El principal mecanismo de georreferenciación es numérico, asociando un conjunto de coordenadas a los puntos representativos del tipo de entidad que se pretende referenciar, si bien no es el único. El segundo mecanismo es alfanumérico usando la dirección postal. Ambos mecanismos presentan dificultades ya sea del lado del ciudadano, por no interpretar correctamente las coordenadas, o por la falta de consistencia en las denominaciones de las vías. En este documento se presenta una propuesta alternativa basada en georreferenciación simbólica que se apoya en los identificadores que gestiona y mantiene la Dirección General de Catastro (DGC) y que ya se están utilizando en el plano del derecho (notarios y registradores) o en el de los tributos (agencia tributaria). La propuesta de mecanismo de georreferenciación pasa por usar las Referencias Catastrales (RC) para localizar infraestructuras y para registrar todo tipo de instalaciones que afectan a la mayoría de los ciudadanos. En esta línea se apunta la necesidad de proveer servicios web que permitan recuperar listas de RC, que se parezcan a un patrón suministrado, así como la posición de dichas RC (GeoCoder), la posibilidad de solicitar la descarga del polígono envolvente de la RC, o determinar la RC más próxima a una determinada posición definida por sus coordenadas. Todo ello usando los formatos de intercambio de información que no requieran la disposición de un servicio intermediario (proxy), como ocurre con los formatos de la familia XML (GML). Se propone el formato GeoJSON, basado en el estándar WKT del OGC y que es fácilmente procesable en entornos web con JavaScript.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El sistema portuario español movió en el año 2013 aproximadamente 458,54 millones de toneladas, 13,8 millones de TEUs, con un total de 131.128 buques que accedieron a puerto para el conjunto de las 28 Autoridades Portuarias. Con el 62% de las exportaciones y el 86% de las importaciones realizadas por vía marítima, una rentabilidad del 2,34 %, muy cerca del objetivo del 2,5 % de rentabilidad media annual establecida legalmente, y una cifra de negocios aproximada de 1.028 millones de euros equivalentes al 1,1 % del PIB que genera un empleo directo e indirecto vinculado de 145.000 personas, concluimos que estamos hablando de un sector estratégico para la economía del país. Desde hace décadas, en muchos puertos del mundo se han venido desarrollando terminales “hub” o de concentración y distribución de cargas. Las navieras concentran entre este tipo de terminales sus líneas transoceánicas con buques de enormes dimensiones y capacidad de carga para producir los tránsitos de contenedores desde estas líneas a otras líneas llamadas “feeder”, con buques de menor tamaño que enlazan el “hub” con los puertos de su área marítima de influencia. La excepcional ubicación geoestratégica de España, con aproximadamente ocho mil kilómetros de costa, ha originado que los puertos españoles de mayor dimensión aspiren a incorporarse a esta red marítima internacional de contenedores y determina que en nuestro sistema portuario los movimientos de contenedores de tránsito tengan gran importancia. Sin embargo, la crisis económica ha tenido un efecto decisivo en el sector marítimo, determinando una lucha feroz entre todos los puertos, nacionales e internacionales, por captar este tipo de tráficos, lo que origina una búsqueda de las compañías navieras de puertos cada vez más eficientes en términos calidad/coste del servicio. La entrada en vigor del Texto Refundido de la Ley de Puertos y la piedra angular de su reforma, la Ley 33/2010, plantea como objetivo principal la mejora de la competitividad del sistema portuario español y liderar su recuperación, ofreciendo unas condiciones de entorno favorables a los puertos españoles que acaben por incentivar la captación de tráficos e inversión privada a través de una oferta de servicios e infraestructura de calidad y a precios competitivos que consoliden su posición dentro del tráfico marítimo mundial. Surge, por tanto, la conveniencia de investigar la influencia de las medidas propuestas por dicha norma legal y las soluciones ofrecidas a las demandas de un sector considerado estratégico para la economía del país, y cuya resolución se considera imprescindible para consolidar su recuperación. Por eso, se han analizado los aspectos más importantes de la reforma mediante la realización de un resumen ejecutivo y se ha estudiado la influencia de las medidas que incorpora desde el punto de vista de tres factores, que previamente se han considerado como fundamentales para la recuperación del sistema portuario español, y que históricamente habían sido demandados por el mismo, como son, en primer lugar, un progresivo sistema de flexibilización tributaria que permitiera a los puertos españoles ganar en términos de competitividad respecto a otros modelos portuarios mucho más flexibles en materia tarifaria, en segundo lugar, una necesaria liberalización del régimen de prestación de los servicios portuarios que posibilite el libre acceso a cualquier interesado en su prestación y, en último lugar, el progresivo abaratamiento de los costes inherentes a dichos servicios, fundamentalmente la manipulación de mercancías. Con posterioridad se ha investigado el trámite parlamentario al que se ha sometido la ley, fruto del enorme consenso alcanzado entre las dos principales fuerzas políticas del país, que determinó que se presentaran más de 700 enmiendas al proyecto original, y en algunos casos, se ha prestado especial atención a determinadas enmiendas que se consideran, en opinión de este investigador, novedosas y aventuradas, razón por la cual quizás no fueron incorporadas definitivamente al texto legal. Y se han analizado las principales demandas y aportaciones extraídas de la Sesión Informativa sobre la tramitación del entonces proyecto de ley ofrecida por la Comisión de Fomento del Congreso de los Diputados a los principales representantes del sector, comunidad portuaria, universidad y sindicatos. Siendo conscientes de la incidencia que tiene el servicio portuario de manipulación de mercancías en el paso de la mercancía por el puerto, se ha hecho una referencia concreta al peculiar régimen jurídico y laboral del personal vinculado al servicio. Avanzamos que las características de la relación laboral especial, y su peculiar régimen jurídico, con una dualidad de relaciones laborales, tiene una influencia decisiva en la nómina del trabajador que se repercute en los usuarios del servicio, fundamentalmente el naviero y el operador de la terminal, que en definitiva, incide en la competitividad del puerto. Y se ha constatado el auge aperturista de numerosas legislaciones portuarias europeas, prestando especial atención al proyecto frustrado de liberalización de los servicios portuarios en la Unión Europea de la conocida como Directiva Loyola de Palacio del año 2003 y al Libro Blanco de Transportes del año 2011. Así como a las deficiencias advertidas por el Dictamen de la Comisión Europea de fecha 27/09/2012 en relación al régimen jurídico del servicio portuario de manipulación de mercancías, que lo considera disconforme y contrario con las normas de libertad de establecimiento en Europa y que amenaza con una previsible reforma unilateral de la legislación portuaria española, a instancias europeas. Bajo este planteamiento, se ha procedido a analizar el marco de prestación de dichos servicios desde el punto de vista de la propia comunidad portuaria. Inicialmente, a través de un estudio de fuerzas de la competitividad del sector de los servicios portuarios en el sistema portuario español que nos permitirá trazar un mapa estratégico del mismo a través del “Modelo de las Cinco Fuerzas de Porter” concluyendo, que el poder de los prestadores de servicios portuarios como proveedores de los mismos, fundamentalmente en la manipulación de mercancías, es máximo, con un único colectivo, los estibadores portuarios, que al amparo de la normativa legal vigente tienen la exclusividad de su prestación. Dichas circunstancias restan competitividad al sistema frente a alternativas portuarias más flexibles y desincentivan la inversión privada. Y, en segundo lugar, mediante un proceso participativo en distintas encuestas sobre el modelo legislativo y sobre el marco formativo del sector con los propios agentes afectados dentro de la comunidad portuaria, desde la triple perspectiva de la vertiente pública que representan las Autoridades Portuarias, como gestores de las infraestructuras, la vertiente privada que representan los usuarios y prestadores de servicios, como principal cliente del puerto y desde el punto de vista de la propia mano de obra portuaria materializada en la representación sindical de dichos trabajadores. Los resultados nos permitirán concluir, respectivamente, la incidencia del servicio portuario mercancía por el puerto, por representar más de la mitad de los costes. Así como la aspiración de los trabajadores adscritos a dicho servicio de consolidar un título formativo que unifique y potencie su capacitación profesional, circunstancia esta última, también demandada por toda comunidad portuaria. Analizadas las conclusiones extraídas en cada una de las líneas de investigación se han detectado una serie de ineficiencias dentro del mismo que dicho marco regulador no ha sabido resolver, por lo que se ha considerado la conveniencia de formular, como herramienta de ayuda a gestores del sistema portuario español, una relación de medidas que, en opinión de este investigador, se consideran necesarias para mejorar el régimen de prestación de los servicios portuarios y se ha propuesto un borrador de modificación del actual Texto Refundido que pueda servir de base para materializar una futura reforma legal. Las conclusiones obtenidas en la investigación deben sentar las bases de una profunda reflexión sobre la necesidad de encaminar, como alternativa a una previsible modificación a instancias europeas, una reforma legal que decididamente apueste por la competitividad del sistema portuario español desde el punto de vista de la liberalización de servicios, el abaratamiento de los costes de la estiba y la necesaria profesionalización de los trabajadores adscritos al servicio portuario de manipulación de mercancías. During 2013 the Spanish Port System moved nearly 458,54 million tons of freight, 13,8 million TEUs, involving a total of 131.128 ships for the 28 existing Port Authorities. With 62% of exports and 86% of imports made through sea transportation, a 2,34% profit, close to the 2,5% average annual profit goal legally established, revenues of 1.028 million € equivalent to a 1.1% of Spain’s GDP and a figure of 145.000 people a directly or indirectly employed we can conclude that maritime industry is undoubtedly one of the strategic and key sectors for the country’s economy. Since several decades many ports in the world have been increasingly developing “Hub” terminals, those which concentrate and distribute freight. Shipping companies place among these type of terminals their transoceanic sea liners along with huge dimension & capacity ships to make the container transit from these liners to other called “feeder” which are smaller freight ships that connect the “hub” with the ports within its maritime area of influence. Spain’s exceptional geostrategic location with over 8.000 km of coastline has originated that those big dimension Spanish ports aspire to become a part of a container international maritime network which also determines that transit container move is key within our port system. Nevertheless the economic crisis has had a decisive impact on the maritime sector originating a fierce battle between all ports, national and international ones, all of them fight against each other to catch this type of maritime traffic which triggers an ongoing shipping companies search in cost/service quality efficient ports. The cornerstone of the Restated Text of Port Law is Law 33/2010, which lays out as main goal the Spanish Port System competitiveness improvement and lead its recovery offering favorable environment conditions to Spanish ports which help encourage maritime traffic attraction and private investment through a wide offer of services, quality of infrastructure and competitive prices which can consolidate its positioning within the world’s maritime traffic. It is therefore key to investigate the influence of the measures proposed by the above mentioned law and also the solutions offered to the demands of a sector which is considered strategic for the country’s economy and which solution is essential to consolidate the recovery. It is because of this that the most important aspects of the reform have been analyzed through the making of an executive summary and it has also been studied the influence of the measures it includes from the point of view of three factors which have previously been considered as key for the Spanish port system recovery. The system has historically demanded a progressive tax flexibility, which would permit Spanish ports be more competitive compared to other port models much more flexible in rates, a necessary liberalization of the port service provision regime and last but not least, to cut the price of costs related to those services, mainly freight handling. Following this, the parliamentary process of the law has also been studied as a consequence of the vast consensus reached by the main political forces in the country which clearly determined that more than 700 amendments to the original project were presented. In some cases the focus has been on amendments which are adventurous and new, reason why they were finally not included to the final legal text. Being well aware of the importance that freight handling procedure has, I have made a specific reference to the legal and working framework of those employees related to this service. We conclude that the special working relationship, its different legal regime, along with the working relationship dualism has a big impact and decisive influence over the worker’s salary which also affects service users, mainly shipowners and terminal operators, having a bad effect on the port’s competitiveness. The above confirms the new opening trend of main European port laws with special attention to the frustrated European Union port services liberalization project, also known as Directive Loyola de Palacio (2003) and the White Paper on Transports (2011). It is important to highlight that the European Commission has also observed several deficiencies with regard to the freight handling port service Law Regime being in disagreement with it, considering it is against the free establishment rules in Europe. The Commission is likely to present a unilateral reform to the Spanish Port Law. Under this approach the service provision framework is being analyzed from the Port Community point of view. Initially the analysis will focus on the study of the competition forces within the port services industry in Spain, this will allow us to draw up an strategic map through “Porter’s Five Forces Model” concluding that the power of port services providers as freight handlers is maximum, with an only collective, stevedores, which has the exclusivity for their services. All these circumstances not only decrease the system’s competitiveness versus other more flexible but also restrain private investments. Secondly, through a participating procedure in different surveys about the legislative model and about the training framework with the affected agents within the port community, there is a triple perspective: Public point of view represented by Port Authorities as infrastructure managers, Private point of view represented by users and service suppliers as main Port’s customer and finally, port workforce, represented by union leaders. Results will let us conclude that freight handling service is the most critical port service and represents more than half of the costs. This service related workers aspire to obtain a training certificate that unifies and boosts their professional role which is also chased by the entire port community. Once conclusions have been analyzed for all research lines, several deficiencies have been found and the regulatory framework hasn’t yet been able to solve them, it has therefore been a series of necessary measures that help improve the port services provision regime. A new proposal to the Restated Law Text has been drafted as the first step to embrace a future legal reform. Conclusions obtained on the research should set the new basis of a deep reflection about the need to bent on a new legal reform which firmly bets on Spanish port system competitiveness from three key points of view, service liberalization, ship load cost reduction and professionalization of freight handling related workers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta tesis aborda metodologías para el cálculo de riesgo de colisión de satélites. La minimización del riesgo de colisión se debe abordar desde dos puntos de vista distintos. Desde el punto de vista operacional, es necesario filtrar los objetos que pueden presentar un encuentro entre todos los objetos que comparten el espacio con un satélite operacional. Puesto que las órbitas, del objeto operacional y del objeto envuelto en la colisión, no se conocen perfectamente, la geometría del encuentro y el riesgo de colisión deben ser evaluados. De acuerdo con dicha geometría o riesgo, una maniobra evasiva puede ser necesaria para evitar la colisión. Dichas maniobras implican un consumo de combustible que impacta en la capacidad de mantenimiento orbital y por tanto de la visa útil del satélite. Por tanto, el combustible necesario a lo largo de la vida útil de un satélite debe ser estimado en fase de diseño de la misión para una correcta definición de su vida útil, especialmente para satélites orbitando en regímenes orbitales muy poblados. Los dos aspectos, diseño de misión y aspectos operacionales en relación con el riesgo de colisión están abordados en esta tesis y se resumen en la Figura 3. En relación con los aspectos relacionados con el diseño de misión (parte inferior de la figura), es necesario evaluar estadísticamente las características de de la población espacial y las teorías que permiten calcular el número medio de eventos encontrados por una misión y su capacidad de reducir riesgo de colisión. Estos dos aspectos definen los procedimientos más apropiados para reducir el riesgo de colisión en fase operacional. Este aspecto es abordado, comenzando por la teoría descrita en [Sánchez-Ortiz, 2006]T.14 e implementada por el autor de esta tesis en la herramienta ARES [Sánchez-Ortiz, 2004b]T.15 proporcionada por ESA para la evaluación de estrategias de evitación de colisión. Esta teoría es extendida en esta tesis para considerar las características de los datos orbitales disponibles en las fases operacionales de un satélite (sección 4.3.3). Además, esta teoría se ha extendido para considerar riesgo máximo de colisión cuando la incertidumbre de las órbitas de objetos catalogados no es conocida (como se da el caso para los TLE), y en el caso de querer sólo considerar riesgo de colisión catastrófico (sección 4.3.2.3). Dichas mejoras se han incluido en la nueva versión de ARES [Domínguez-González and Sánchez-Ortiz, 2012b]T.12 puesta a disposición a través de [SDUP,2014]R.60. En fase operacional, los catálogos que proporcionan datos orbitales de los objetos espaciales, son procesados rutinariamente, para identificar posibles encuentros que se analizan en base a algoritmos de cálculo de riesgo de colisión para proponer maniobras de evasión. Actualmente existe una única fuente de datos públicos, el catálogo TLE (de sus siglas en inglés, Two Line Elements). Además, el Joint Space Operation Center (JSpOC) Americano proporciona mensajes con alertas de colisión (CSM) cuando el sistema de vigilancia americano identifica un posible encuentro. En función de los datos usados en fase operacional (TLE o CSM), la estrategia de evitación puede ser diferente debido a las características de dicha información. Es preciso conocer las principales características de los datos disponibles (respecto a la precisión de los datos orbitales) para estimar los posibles eventos de colisión encontrados por un satélite a lo largo de su vida útil. En caso de los TLE, cuya precisión orbital no es proporcionada, la información de precisión orbital derivada de un análisis estadístico se puede usar también en el proceso operacional así como en el diseño de la misión. En caso de utilizar CSM como base de las operaciones de evitación de colisiones, se conoce la precisión orbital de los dos objetos involucrados. Estas características se han analizado en detalle, evaluando estadísticamente las características de ambos tipos de datos. Una vez concluido dicho análisis, se ha analizado el impacto de utilizar TLE o CSM en las operaciones del satélite (sección 5.1). Este análisis se ha publicado en una revista especializada [Sánchez-Ortiz, 2015b]T.3. En dicho análisis, se proporcionan recomendaciones para distintas misiones (tamaño del satélite y régimen orbital) en relación con las estrategias de evitación de colisión para reducir el riesgo de colisión de manera significativa. Por ejemplo, en el caso de un satélite en órbita heliosíncrona en régimen orbital LEO, el valor típico del ACPL que se usa de manera extendida es 10-4. Este valor no es adecuado cuando los esquemas de evitación de colisión se realizan sobre datos TLE. En este caso, la capacidad de reducción de riesgo es prácticamente nula (debido a las grandes incertidumbres de los datos TLE) incluso para tiempos cortos de predicción. Para conseguir una reducción significativa del riesgo, sería necesario usar un ACPL en torno a 10-6 o inferior, produciendo unas 10 alarmas al año por satélite (considerando predicciones a un día) o 100 alarmas al año (con predicciones a tres días). Por tanto, la principal conclusión es la falta de idoneidad de los datos TLE para el cálculo de eventos de colisión. Al contrario, usando los datos CSM, debido a su mejor precisión orbital, se puede obtener una reducción significativa del riesgo con ACPL en torno a 10-4 (considerando 3 días de predicción). Incluso 5 días de predicción pueden ser considerados con ACPL en torno a 10-5. Incluso tiempos de predicción más largos se pueden usar (7 días) con reducción del 90% del riesgo y unas 5 alarmas al año (en caso de predicciones de 5 días, el número de maniobras se mantiene en unas 2 al año). La dinámica en GEO es diferente al caso LEO y hace que el crecimiento de las incertidumbres orbitales con el tiempo de propagación sea menor. Por el contrario, las incertidumbres derivadas de la determinación orbital son peores que en LEO por las diferencias en las capacidades de observación de uno y otro régimen orbital. Además, se debe considerar que los tiempos de predicción considerados para LEO pueden no ser apropiados para el caso de un satélite GEO (puesto que tiene un periodo orbital mayor). En este caso usando datos TLE, una reducción significativa del riesgo sólo se consigue con valores pequeños de ACPL, produciendo una alarma por año cuando los eventos de colisión se predicen a un día vista (tiempo muy corto para implementar maniobras de evitación de colisión).Valores más adecuados de ACPL se encuentran entre 5•10-8 y 10-7, muy por debajo de los valores usados en las operaciones actuales de la mayoría de las misiones GEO (de nuevo, no se recomienda en este régimen orbital basar las estrategias de evitación de colisión en TLE). Los datos CSM permiten una reducción de riesgo apropiada con ACPL entre 10-5 y 10-4 con tiempos de predicción cortos y medios (10-5 se recomienda para predicciones a 5 o 7 días). El número de maniobras realizadas sería una en 10 años de misión. Se debe notar que estos cálculos están realizados para un satélite de unos 2 metros de radio. En el futuro, otros sistemas de vigilancia espacial (como el programa SSA de la ESA), proporcionarán catálogos adicionales de objetos espaciales con el objetivo de reducir el riesgo de colisión de los satélites. Para definir dichos sistemas de vigilancia, es necesario identificar las prestaciones del catalogo en función de la reducción de riesgo que se pretende conseguir. Las características del catálogo que afectan principalmente a dicha capacidad son la cobertura (número de objetos incluidos en el catalogo, limitado principalmente por el tamaño mínimo de los objetos en función de las limitaciones de los sensores utilizados) y la precisión de los datos orbitales (derivada de las prestaciones de los sensores en relación con la precisión de las medidas y la capacidad de re-observación de los objetos). El resultado de dicho análisis (sección 5.2) se ha publicado en una revista especializada [Sánchez-Ortiz, 2015a]T.2. Este análisis no estaba inicialmente previsto durante la tesis, y permite mostrar como la teoría descrita en esta tesis, inicialmente definida para facilitar el diseño de misiones (parte superior de la figura 1) se ha extendido y se puede aplicar para otros propósitos como el dimensionado de un sistema de vigilancia espacial (parte inferior de la figura 1). La principal diferencia de los dos análisis se basa en considerar las capacidades de catalogación (precisión y tamaño de objetos observados) como una variable a modificar en el caso de un diseño de un sistema de vigilancia), siendo fijas en el caso de un diseño de misión. En el caso de las salidas generadas en el análisis, todos los aspectos calculados en un análisis estadístico de riesgo de colisión son importantes para diseño de misión (con el objetivo de calcular la estrategia de evitación y la cantidad de combustible a utilizar), mientras que en el caso de un diseño de un sistema de vigilancia, los aspectos más importantes son el número de maniobras y falsas alarmas (fiabilidad del sistema) y la capacidad de reducción de riesgo (efectividad del sistema). Adicionalmente, un sistema de vigilancia espacial debe ser caracterizado por su capacidad de evitar colisiones catastróficas (evitando así in incremento dramático de la población de basura espacial), mientras que el diseño de una misión debe considerar todo tipo de encuentros, puesto que un operador está interesado en evitar tanto las colisiones catastróficas como las letales. Del análisis de las prestaciones (tamaño de objetos a catalogar y precisión orbital) requeridas a un sistema de vigilancia espacial se concluye que ambos aspectos han de ser fijados de manera diferente para los distintos regímenes orbitales. En el caso de LEO se hace necesario observar objetos de hasta 5cm de radio, mientras que en GEO se rebaja este requisito hasta los 100 cm para cubrir las colisiones catastróficas. La razón principal para esta diferencia viene de las diferentes velocidades relativas entre los objetos en ambos regímenes orbitales. En relación con la precisión orbital, ésta ha de ser muy buena en LEO para poder reducir el número de falsas alarmas, mientras que en regímenes orbitales más altos se pueden considerar precisiones medias. En relación con los aspectos operaciones de la determinación de riesgo de colisión, existen varios algoritmos de cálculo de riesgo entre dos objetos espaciales. La Figura 2 proporciona un resumen de los casos en cuanto a algoritmos de cálculo de riesgo de colisión y como se abordan en esta tesis. Normalmente se consideran objetos esféricos para simplificar el cálculo de riesgo (caso A). Este caso está ampliamente abordado en la literatura y no se analiza en detalle en esta tesis. Un caso de ejemplo se proporciona en la sección 4.2. Considerar la forma real de los objetos (caso B) permite calcular el riesgo de una manera más precisa. Un nuevo algoritmo es definido en esta tesis para calcular el riesgo de colisión cuando al menos uno de los objetos se considera complejo (sección 4.4.2). Dicho algoritmo permite calcular el riesgo de colisión para objetos formados por un conjunto de cajas, y se ha presentado en varias conferencias internacionales. Para evaluar las prestaciones de dicho algoritmo, sus resultados se han comparado con un análisis de Monte Carlo que se ha definido para considerar colisiones entre cajas de manera adecuada (sección 4.1.2.3), pues la búsqueda de colisiones simples aplicables para objetos esféricos no es aplicable a este caso. Este análisis de Monte Carlo se considera la verdad a la hora de calcular los resultados del algoritmos, dicha comparativa se presenta en la sección 4.4.4. En el caso de satélites que no se pueden considerar esféricos, el uso de un modelo de la geometría del satélite permite descartar eventos que no son colisiones reales o estimar con mayor precisión el riesgo asociado a un evento. El uso de estos algoritmos con geometrías complejas es más relevante para objetos de dimensiones grandes debido a las prestaciones de precisión orbital actuales. En el futuro, si los sistemas de vigilancia mejoran y las órbitas son conocidas con mayor precisión, la importancia de considerar la geometría real de los satélites será cada vez más relevante. La sección 5.4 presenta un ejemplo para un sistema de grandes dimensiones (satélite con un tether). Adicionalmente, si los dos objetos involucrados en la colisión tienen velocidad relativa baja (y geometría simple, Caso C en la Figura 2), la mayor parte de los algoritmos no son aplicables requiriendo implementaciones dedicadas para este caso particular. En esta tesis, uno de estos algoritmos presentado en la literatura [Patera, 2001]R.26 se ha analizado para determinar su idoneidad en distintos tipos de eventos (sección 4.5). La evaluación frete a un análisis de Monte Carlo se proporciona en la sección 4.5.2. Tras este análisis, se ha considerado adecuado para abordar las colisiones de baja velocidad. En particular, se ha concluido que el uso de algoritmos dedicados para baja velocidad son necesarios en función del tamaño del volumen de colisión proyectado en el plano de encuentro (B-plane) y del tamaño de la incertidumbre asociada al vector posición entre los dos objetos. Para incertidumbres grandes, estos algoritmos se hacen más necesarios pues la duración del intervalo en que los elipsoides de error de los dos objetos pueden intersecar es mayor. Dicho algoritmo se ha probado integrando el algoritmo de colisión para objetos con geometrías complejas. El resultado de dicho análisis muestra que este algoritmo puede ser extendido fácilmente para considerar diferentes tipos de algoritmos de cálculo de riesgo de colisión (sección 4.5.3). Ambos algoritmos, junto con el método Monte Carlo para geometrías complejas, se han implementado en la herramienta operacional de la ESA CORAM, que es utilizada para evaluar el riesgo de colisión en las actividades rutinarias de los satélites operados por ESA [Sánchez-Ortiz, 2013a]T.11. Este hecho muestra el interés y relevancia de los algoritmos desarrollados para la mejora de las operaciones de los satélites. Dichos algoritmos han sido presentados en varias conferencias internacionales [Sánchez-Ortiz, 2013b]T.9, [Pulido, 2014]T.7,[Grande-Olalla, 2013]T.10, [Pulido, 2014]T.5, [Sánchez-Ortiz, 2015c]T.1. ABSTRACT This document addresses methodologies for computation of the collision risk of a satellite. Two different approaches need to be considered for collision risk minimisation. On an operational basis, it is needed to perform a sieve of possible objects approaching the satellite, among all objects sharing the space with an operational satellite. As the orbits of both, satellite and the eventual collider, are not perfectly known but only estimated, the miss-encounter geometry and the actual risk of collision shall be evaluated. In the basis of the encounter geometry or the risk, an eventual manoeuvre may be required to avoid the conjunction. Those manoeuvres will be associated to a reduction in the fuel for the mission orbit maintenance, and thus, may reduce the satellite operational lifetime. Thus, avoidance manoeuvre fuel budget shall be estimated, at mission design phase, for a better estimation of mission lifetime, especially for those satellites orbiting in very populated orbital regimes. These two aspects, mission design and operational collision risk aspects, are summarised in Figure 3, and covered along this thesis. Bottom part of the figure identifies the aspects to be consider for the mission design phase (statistical characterisation of the space object population data and theory computing the mean number of events and risk reduction capability) which will define the most appropriate collision avoidance approach at mission operational phase. This part is covered in this work by starting from the theory described in [Sánchez-Ortiz, 2006]T.14 and implemented by this author in ARES tool [Sánchez-Ortiz, 2004b]T.15 provided by ESA for evaluation of collision avoidance approaches. This methodology has been now extended to account for the particular features of the available data sets in operational environment (section 4.3.3). Additionally, the formulation has been extended to allow evaluating risk computation approached when orbital uncertainty is not available (like the TLE case) and when only catastrophic collisions are subject to study (section 4.3.2.3). These improvements to the theory have been included in the new version of ESA ARES tool [Domínguez-González and Sánchez-Ortiz, 2012b]T.12 and available through [SDUP,2014]R.60. At the operation phase, the real catalogue data will be processed on a routine basis, with adequate collision risk computation algorithms to propose conjunction avoidance manoeuvre optimised for every event. The optimisation of manoeuvres in an operational basis is not approached along this document. Currently, American Two Line Element (TLE) catalogue is the only public source of data providing orbits of objects in space to identify eventual conjunction events. Additionally, Conjunction Summary Message (CSM) is provided by Joint Space Operation Center (JSpOC) when the American system identifies a possible collision among satellites and debris. Depending on the data used for collision avoidance evaluation, the conjunction avoidance approach may be different. The main features of currently available data need to be analysed (in regards to accuracy) in order to perform estimation of eventual encounters to be found along the mission lifetime. In the case of TLE, as these data is not provided with accuracy information, operational collision avoidance may be also based on statistical accuracy information as the one used in the mission design approach. This is not the case for CSM data, which includes the state vector and orbital accuracy of the two involved objects. This aspect has been analysed in detail and is depicted in the document, evaluating in statistical way the characteristics of both data sets in regards to the main aspects related to collision avoidance. Once the analysis of data set was completed, investigations on the impact of those features in the most convenient avoidance approaches have been addressed (section 5.1). This analysis is published in a peer-reviewed journal [Sánchez-Ortiz, 2015b]T.3. The analysis provides recommendations for different mission types (satellite size and orbital regime) in regards to the most appropriate collision avoidance approach for relevant risk reduction. The risk reduction capability is very much dependent on the accuracy of the catalogue utilized to identify eventual collisions. Approaches based on CSM data are recommended against the TLE based approach. Some approaches based on the maximum risk associated to envisaged encounters are demonstrated to report a very large number of events, which makes the approach not suitable for operational activities. Accepted Collision Probability Levels are recommended for the definition of the avoidance strategies for different mission types. For example for the case of a LEO satellite in the Sun-synchronous regime, the typically used ACPL value of 10-4 is not a suitable value for collision avoidance schemes based on TLE data. In this case the risk reduction capacity is almost null (due to the large uncertainties associated to TLE data sets, even for short time-to-event values). For significant reduction of risk when using TLE data, ACPL on the order of 10-6 (or lower) seems to be required, producing about 10 warnings per year and mission (if one-day ahead events are considered) or 100 warnings per year (for three-days ahead estimations). Thus, the main conclusion from these results is the lack of feasibility of TLE for a proper collision avoidance approach. On the contrary, for CSM data, and due to the better accuracy of the orbital information when compared with TLE, ACPL on the order of 10-4 allows to significantly reduce the risk. This is true for events estimated up to 3 days ahead. Even 5 days ahead events can be considered, but ACPL values down to 10-5 should be considered in such case. Even larger prediction times can be considered (7 days) for risk reduction about 90%, at the cost of larger number of warnings up to 5 events per year, when 5 days prediction allows to keep the manoeuvre rate in 2 manoeuvres per year. Dynamics of the GEO orbits is different to that in LEO, impacting on a lower increase of orbits uncertainty along time. On the contrary, uncertainties at short prediction times at this orbital regime are larger than those at LEO due to the differences in observation capabilities. Additionally, it has to be accounted that short prediction times feasible at LEO may not be appropriate for a GEO mission due to the orbital period being much larger at this regime. In the case of TLE data sets, significant reduction of risk is only achieved for small ACPL values, producing about a warning event per year if warnings are raised one day in advance to the event (too short for any reaction to be considered). Suitable ACPL values would lay in between 5•10-8 and 10-7, well below the normal values used in current operations for most of the GEO missions (TLE-based strategies for collision avoidance at this regime are not recommended). On the contrary, CSM data allows a good reduction of risk with ACPL in between 10-5 and 10-4 for short and medium prediction times. 10-5 is recommended for prediction times of five or seven days. The number of events raised for a suitable warning time of seven days would be about one in a 10-year mission. It must be noted, that these results are associated to a 2 m radius spacecraft, impact of the satellite size are also analysed within the thesis. In the future, other Space Situational Awareness Systems (SSA, ESA program) may provide additional catalogues of objects in space with the aim of reducing the risk. It is needed to investigate which are the required performances of those catalogues for allowing such risk reduction. The main performance aspects are coverage (objects included in the catalogue, mainly limited by a minimum object size derived from sensor performances) and the accuracy of the orbital data to accurately evaluate the conjunctions (derived from sensor performance in regards to object observation frequency and accuracy). The results of these investigations (section 5.2) are published in a peer-reviewed journal [Sánchez-Ortiz, 2015a]T.2. This aspect was not initially foreseen as objective of the thesis, but it shows how the theory described in the thesis, initially defined for mission design in regards to avoidance manoeuvre fuel allocation (upper part of figure 1), is extended and serves for additional purposes as dimensioning a Space Surveillance and Tracking (SST) system (bottom part of figure below). The main difference between the two approaches is the consideration of the catalogue features as part of the theory which are not modified (for the satellite mission design case) instead of being an input for the analysis (in the case of the SST design). In regards to the outputs, all the features computed by the statistical conjunction analysis are of importance for mission design (with the objective of proper global avoidance strategy definition and fuel allocation), whereas for the case of SST design, the most relevant aspects are the manoeuvre and false alarm rates (defining a reliable system) and the Risk Reduction capability (driving the effectiveness of the system). In regards to the methodology for computing the risk, the SST system shall be driven by the capacity of providing the means to avoid catastrophic conjunction events (avoiding the dramatic increase of the population), whereas the satellite mission design should consider all type of encounters, as the operator is interested on avoiding both lethal and catastrophic collisions. From the analysis of the SST features (object coverage and orbital uncertainty) for a reliable system, it is concluded that those two characteristics are to be imposed differently for the different orbital regimes, as the population level is different depending on the orbit type. Coverage values range from 5 cm for very populated LEO regime up to 100 cm in the case of GEO region. The difference on this requirement derives mainly from the relative velocity of the encounters at those regimes. Regarding the orbital knowledge of the catalogues, very accurate information is required for objects in the LEO region in order to limit the number of false alarms, whereas intermediate orbital accuracy can be considered for higher orbital regimes. In regards to the operational collision avoidance approaches, several collision risk algorithms are used for evaluation of collision risk of two pair of objects. Figure 2 provides a summary of the different collision risk algorithm cases and indicates how they are covered along this document. The typical case with high relative velocity is well covered in literature for the case of spherical objects (case A), with a large number of available algorithms, that are not analysed in detailed in this work. Only a sample case is provided in section 4.2. If complex geometries are considered (Case B), a more realistic risk evaluation can be computed. New approach for the evaluation of risk in the case of complex geometries is presented in this thesis (section 4.4.2), and it has been presented in several international conferences. The developed algorithm allows evaluating the risk for complex objects formed by a set of boxes. A dedicated Monte Carlo method has also been described (section 4.1.2.3) and implemented to allow the evaluation of the actual collisions among a large number of simulation shots. This Monte Carlo runs are considered the truth for comparison of the algorithm results (section 4.4.4). For spacecrafts that cannot be considered as spheres, the consideration of the real geometry of the objects may allow to discard events which are not real conjunctions, or estimate with larger reliability the risk associated to the event. This is of particular importance for the case of large spacecrafts as the uncertainty in positions of actual catalogues does not reach small values to make a difference for the case of objects below meter size. As the tracking systems improve and the orbits of catalogued objects are known more precisely, the importance of considering actual shapes of the objects will become more relevant. The particular case of a very large system (as a tethered satellite) is analysed in section 5.4. Additionally, if the two colliding objects have low relative velocity (and simple geometries, case C in figure above), the most common collision risk algorithms fail and adequate theories need to be applied. In this document, a low relative velocity algorithm presented in the literature [Patera, 2001]R.26 is described and evaluated (section 4.5). Evaluation through comparison with Monte Carlo approach is provided in section 4.5.2. The main conclusion of this analysis is the suitability of this algorithm for the most common encounter characteristics, and thus it is selected as adequate for collision risk estimation. Its performances are evaluated in order to characterise when it can be safely used for a large variety of encounter characteristics. In particular, it is found that the need of using dedicated algorithms depend on both the size of collision volume in the B-plane and the miss-distance uncertainty. For large uncertainties, the need of such algorithms is more relevant since for small uncertainties the encounter duration where the covariance ellipsoids intersect is smaller. Additionally, its application for the case of complex satellite geometries is assessed (case D in figure above) by integrating the developed algorithm in this thesis with Patera’s formulation for low relative velocity encounters. The results of this analysis show that the algorithm can be easily extended for collision risk estimation process suitable for complex geometry objects (section 4.5.3). The two algorithms, together with the Monte Carlo method, have been implemented in the operational tool CORAM for ESA which is used for the evaluation of collision risk of ESA operated missions, [Sánchez-Ortiz, 2013a]T.11. This fact shows the interest and relevance of the developed algorithms for improvement of satellite operations. The algorithms have been presented in several international conferences, [Sánchez-Ortiz, 2013b]T.9, [Pulido, 2014]T.7,[Grande-Olalla, 2013]T.10, [Pulido, 2014]T.5, [Sánchez-Ortiz, 2015c]T.1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El principal objetivo de este trabajo es proporcionar una solución en tiempo real basada en visión estéreo o monocular precisa y robusta para que un vehículo aéreo no tripulado (UAV) sea autónomo en varios tipos de aplicaciones UAV, especialmente en entornos abarrotados sin señal GPS. Este trabajo principalmente consiste en tres temas de investigación de UAV basados en técnicas de visión por computador: (I) visual tracking, proporciona soluciones efectivas para localizar visualmente objetos de interés estáticos o en movimiento durante el tiempo que dura el vuelo del UAV mediante una aproximación adaptativa online y una estrategia de múltiple resolución, de este modo superamos los problemas generados por las diferentes situaciones desafiantes, tales como cambios significativos de aspecto, iluminación del entorno variante, fondo del tracking embarullado, oclusión parcial o total de objetos, variaciones rápidas de posición y vibraciones mecánicas a bordo. La solución ha sido utilizada en aterrizajes autónomos, inspección de plataformas mar adentro o tracking de aviones en pleno vuelo para su detección y evasión; (II) odometría visual: proporciona una solución eficiente al UAV para estimar la posición con 6 grados de libertad (6D) usando únicamente la entrada de una cámara estéreo a bordo del UAV. Un método Semi-Global Blocking Matching (SGBM) eficiente basado en una estrategia grueso-a-fino ha sido implementada para una rápida y profunda estimación del plano. Además, la solución toma provecho eficazmente de la información 2D y 3D para estimar la posición 6D, resolviendo de esta manera la limitación de un punto de referencia fijo en la cámara estéreo. Una robusta aproximación volumétrica de mapping basada en el framework Octomap ha sido utilizada para reconstruir entornos cerrados y al aire libre bastante abarrotados en 3D con memoria y errores correlacionados espacialmente o temporalmente; (III) visual control, ofrece soluciones de control prácticas para la navegación de un UAV usando Fuzzy Logic Controller (FLC) con la estimación visual. Y el framework de Cross-Entropy Optimization (CEO) ha sido usado para optimizar el factor de escala y la función de pertenencia en FLC. Todas las soluciones basadas en visión en este trabajo han sido probadas en test reales. Y los conjuntos de datos de imágenes reales grabados en estos test o disponibles para la comunidad pública han sido utilizados para evaluar el rendimiento de estas soluciones basadas en visión con ground truth. Además, las soluciones de visión presentadas han sido comparadas con algoritmos de visión del estado del arte. Los test reales y los resultados de evaluación muestran que las soluciones basadas en visión proporcionadas han obtenido rendimientos en tiempo real precisos y robustos, o han alcanzado un mejor rendimiento que aquellos algoritmos del estado del arte. La estimación basada en visión ha ganado un rol muy importante en controlar un UAV típico para alcanzar autonomía en aplicaciones UAV. ABSTRACT The main objective of this dissertation is providing real-time accurate robust monocular or stereo vision-based solution for Unmanned Aerial Vehicle (UAV) to achieve the autonomy in various types of UAV applications, especially in GPS-denied dynamic cluttered environments. This dissertation mainly consists of three UAV research topics based on computer vision technique: (I) visual tracking, it supplys effective solutions to visually locate interesting static or moving object over time during UAV flight with on-line adaptivity approach and multiple-resolution strategy, thereby overcoming the problems generated by the different challenging situations, such as significant appearance change, variant surrounding illumination, cluttered tracking background, partial or full object occlusion, rapid pose variation and onboard mechanical vibration. The solutions have been utilized in autonomous landing, offshore floating platform inspection and midair aircraft tracking for sense-and-avoid; (II) visual odometry: it provides the efficient solution for UAV to estimate the 6 Degree-of-freedom (6D) pose using only the input of stereo camera onboard UAV. An efficient Semi-Global Blocking Matching (SGBM) method based on a coarse-to-fine strategy has been implemented for fast depth map estimation. In addition, the solution effectively takes advantage of both 2D and 3D information to estimate the 6D pose, thereby solving the limitation of a fixed small baseline in the stereo camera. A robust volumetric occupancy mapping approach based on the Octomap framework has been utilized to reconstruct indoor and outdoor large-scale cluttered environments in 3D with less temporally or spatially correlated measurement errors and memory; (III) visual control, it offers practical control solutions to navigate UAV using Fuzzy Logic Controller (FLC) with the visual estimation. And the Cross-Entropy Optimization (CEO) framework has been used to optimize the scaling factor and the membership function in FLC. All the vision-based solutions in this dissertation have been tested in real tests. And the real image datasets recorded from these tests or available from public community have been utilized to evaluate the performance of these vision-based solutions with ground truth. Additionally, the presented vision solutions have compared with the state-of-art visual algorithms. Real tests and evaluation results show that the provided vision-based solutions have obtained real-time accurate robust performances, or gained better performance than those state-of-art visual algorithms. The vision-based estimation has played a critically important role for controlling a typical UAV to achieve autonomy in the UAV application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este documento se centra en la identificación y evolución de los grupos estratégicos (GE) del sector bancario de Venezuela durante el periodo 2008-2010. El test M de Box demostró que hubo inestabilidad financiera durante este lapso de tiempo, por ello se evaluó el comportamiento de los GE en cada año de estudio. Otros resultados habían indicado que 1) al aplicar un procedimiento estadístico es posible detectar gradaciones en la implementación o evasión de las estrategias, o del compromiso de recursos por parte de los GE, y 2) el empleo del procedimiento estadístico llevó a coincidir con estudios previos en que ninguno de los GE estudiados correspondió de manera exclusiva a las grandes categorías del negocio bancario: corporativo, minorista, de inversión, entre otras, sino que desarrollaron estrategias híbridas, pero bien diferenciadas según las variables utilizadas. Este comportamiento híbrido fue demostrado inequívocamente con las pruebas post hoc aplicadas; para competir los GE ejecutan un conjunto de estrategias y no una sola. Esta investigación sugiere que en momentos de inestabilidad financiera los bancos cambian de estrategia y por tanto de GE, con el fin de obtener un buen desempeño, o al menos sobrevivir. Estos resultados permitirán a gerentes de los bancos conocer en qué GE están participando, saber cuáles son sus rivales más inmediatos y qué estrategias llevan a cabo los bancos que integran los demás GE, además de cómo evolucionan los GE en entornos inestables

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta investigación se centra en determinar los grupos estratégicos (GE) de la industria bancaria venezolana y su influencia sobre el desempeño en el sector, así como su relación con la cobertura y la exclusión geográfica, durante el período 2008-2010. El test M de Box demostró que hubo inestabilidad financiera durante este lapso de tiempo, por ello se evaluó el comportamiento de los GE en cada año de estudio. La muestra se constituyó para el año 2008 por 58 entidades financieras, en el año 2009 por 52 entidades bancarias y para el período 2010 por sólo 39 instituciones. Antes de la aplicación del análisis cluster a las variables de alcance de la estrategia y recursos comprometidos, se realizó un análisis de componentes principales para determinar la relación entre estas variables y detectar valores atípicos; mientras que para distinguir las estrategias que caracterizaron a los grupos se siguió el procedimiento de uso común propuesto por Amel y Rhoades (1988), y se reforzó con la realización de las pruebas de contraste de medias o medianas ANOVA, Scheffé, Kruskal-Wallis y U de Mann-Whitney. Se empleó el paquete estadístico SPSS (versión 15.0) y el software de sistema de información geográfica Arcgis (versión 9.2) para lograr el objetivo propuesto. Los resultados indican que: 1) Al aplicar un procedimiento estadístico es posible detectar gradaciones en la implementación o evasión de las estrategias o del compromiso de recursos por parte de los GE, 2) En momentos de inestabilidad financiera los bancos cambian de estrategia y por tanto de GE, con el fin de obtener un buen desempeño, o al menos sobrevivir, 3) Sólo hubo evidencia parcial de la validez predictiva de los grupos estratégicos, 4) Al menos en Venezuela, los GE bancarios tienden a adoptar una estrategia de cobertura geográfica acorde con su estrategia financiera y, además que, los GE difieren en el nivel de Responsabilidad Social Empresarial en la lucha contra la exclusión financiera geográfica. ABSTRACT This research focuses on identifying strategic groups (SG) of the Venezuelan banking industry and its influence on the performance in the sector and its relationship with geographical coverage and exclusion, during the period 2008-2010. Box M test showed that there was financial instability during this period, so the behavior of SG in each year of study was evaluated. The sample was established for 2008 by 58 financial institutions, in 2009 by 52 banks and for the period 2010 to only 39 institutions. Before applying the cluster analysis variables scope of the strategy and committed resources, principal component analysis was performed to determine the relationship between these variables and outliers; while distinguishing strategies that characterized the group proposed by Amel and Rhoades (1988) commonly used procedure was followed and reinforced by the performance of tests contrast mean or median ANOVA, Scheffé, Kruskal-Wallis and Mann-Whitney. SPSS (version 15.0) and software Arcgis geographic information system (version 9.2) was used to achieve the objective. The results indicate that: 1) By applying a statistical procedure can detect gradations in implementation or avoidance strategies or resource commitment by SG, 2) In times of financial instability banks change their strategy and therefore SG, in order to get a good performance, or at least survive, 3) There was only partial evidence for the predictive validity of strategic groups, 4) At least in Venezuela, banking SG tend to adopt a strategy of geographical coverage according to their financial strategy and also that the SG differ in the level of corporate social responsibility in the fight against financial exclusion Geographic.