3 resultados para Euler-Bernoulli model
em Universidad Politécnica de Madrid
Resumo:
The response of high-speed bridges at resonance, particularly under flexural vibrations, constitutes a subject of research for many scientists and engineers at the moment. The topic is of great interest because, as a matter of fact, such kind of behaviour is not unlikely to happen due to the elevated operating speeds of modern rains, which in many cases are equal to or even exceed 300 km/h ( [1,2]). The present paper addresses the subject of the evolution of the wheel-rail contact forces during resonance situations in simply supported bridges. Based on a dimensionless formulation of the equations of motion presented in [4], very similar to the one introduced by Klasztorny and Langer in [3], a parametric study is conducted and the contact forces in realistic situations analysed in detail. The effects of rail and wheel irregularities are not included in the model. The bridge is idealised as an Euler-Bernoulli beam, while the train is simulated by a system consisting of rigid bodies, springs and dampers. The situations such that a severe reduction of the contact force could take place are identified and compared with typical situations in actual bridges. To this end, the simply supported bridge is excited at resonace by means of a theoretical train consisting of 15 equidistant axles. The mechanical characteristics of all axles (unsprung mass, semi-sprung mass, and primary suspension system) are identical. This theoretical train permits the identification of the key parameters having an influence on the wheel-rail contact forces. In addition, a real case of a 17.5 m bridges traversed by the Eurostar train is analysed and checked against the theoretical results. The influence of three fundamental parameters is investigated in great detail: a) the ratio of the fundamental frequency of the bridge and natural frequency of the primary suspension of the vehicle; b) the ratio of the total mass of the bridge and the semi-sprung mass of the vehicle and c) the ratio between the length of the bridge and the characteristic distance between consecutive axles. The main conclusions derived from the investigation are: The wheel-rail contact forces undergo oscillations during the passage of the axles over the bridge. During resonance, these oscillations are more severe for the rear wheels than for the front ones. If denotes the span of a simply supported bridge, and the characteristic distance between consecutive groups of loads, the lower the value of , the greater the oscillations of the contact forces at resonance. For or greater, no likelihood of loss of wheel-rail contact has been detected. The ratio between the frequency of the primary suspension of the vehicle and the fundamental frequency of the bridge is denoted by (frequency ratio), and the ratio of the semi-sprung mass of the vehicle (mass of the bogie) and the total mass of the bridge is denoted by (mass ratio). For any given frequency ratio, the greater the mass ratio, the greater the oscillations of the contact forces at resonance. The oscillations of the contact forces at resonance, and therefore the likelihood of loss of wheel-rail contact, present a minimum for approximately between 0.5 and 1. For lower or higher values of the frequency ratio the oscillations of the contact forces increase. Neglecting the possible effects of torsional vibrations, the metal or composite bridges with a low linear mass have been found to be the ones where the contact forces may suffer the most severe oscillations. If single-track, simply supported, composite or metal bridges were used in high-speed lines, and damping ratios below 1% were expected, the minimum contact forces at resonance could drop to dangerous values. Nevertheless, this kind of structures is very unusual in modern high-speed railway lines.
Resumo:
En este trabajo se introducen, en el contexto del Método de Elementos Finitos, dos alternativas posibles en relación con el concepto de acción repartida equivalente. La primera consiste en emplear pocos elementos, elevando el orden de dicha acción, mientras que la segunda se basa en emplear un mayor número de elementos dejando la acción en el orden más bajo posible. Se ilustran ambas situaciones mediante aplicaciones a los modelos de vigas de Timoshenko y Bernoulli-Euler, empleando estas acciones con diferentes órdenes, las cuales aproximan a la acción original, mediante polinomios ortogonales de Legendre en cada elemento. Como conclusión destacable, se indica que cuando se considera el menor número posible de elementos, es decir uno, para los casos de carga poco regular, ha bastado con utilizar acciones repartidas equivalentes de orden ligeramente superior al mínimo (orden cuatro), para obtener una excelente aproximación en los desplazamientos, giros y esfuerzos en el interior de los elementos.
Resumo:
El hormigón estructural sigue siendo sin duda uno de los materiales más utilizados en construcción debido a su resistencia, rigidez y flexibilidad para diseñar estructuras. El cálculo de estructuras de hormigón, utilizando vigas y vigas-columna, es complejo debido a los fenómenos de acoplamiento entre esfuerzos y al comportamiento no lineal del material. Los modelos más empleados para su análisis son el de Bernoulli-Euler y el de Timoshenko, indicándose en la literatura la conveniencia de usar el segundo cuando la relación canto/luz no es pequeña o los elementos están fuertemente armados. El objetivo fundamental de esta tesis es el análisis de elementos viga y viga-columna en régimen no lineal con deformación por cortante, aplicando el concepto de Pieza Lineal Equivalente (PLE). Concepto éste que consiste básicamente en resolver el problema de una pieza en régimen no lineal, transformándolo en uno lineal equivalente, de modo que ambas piezas tengan la misma deformada y los mismos esfuerzos. Para ello, se hizo en primer lugar un estudio comparado de: las distintas propuestas que aplican la deformación por cortante, de los distintos modelos constitutivos y seccionales del hormigón estructural y de los métodos de cálculo no lineal aplicando el método de elementos finitos (MEF). Teniendo en cuenta que la resolución del problema no lineal se basa en la resolución de sucesivos problemas lineales empleando un proceso de homotopía, los problemas lineales de la viga y viga-columna de Timoshenko, se resuelven mediante MEF, utilizando soluciones nodalmente exactas (SNE) y acción repartida equivalente de cualquier orden. Se obtiene así, con muy pocos elementos finitos, una excelente aproximación de la solución, no sólo en los nodos sino en el interior de los elementos. Se introduce el concepto PLE para el análisis de una barra, de material no lineal, sometida a acciones axiales, y se extiende el mismo para el análisis no lineal de vigas y vigas-columna con deformación por cortante. Cabe señalar que para estos últimos, la solución de una pieza en régimen no lineal es igual a la de una en régimen lineal, cuyas rigideces son constantes a trozos, y donde además hay que añadir momentos y cargas puntuales ficticias en los nodos, así como, un momento distribuido ficticio en toda la pieza. Se han desarrollado dos métodos para el análisis: uno para problemas isostáticos y otro general, aplicable tanto a problemas isostáticos como hiperestáticos. El primero determina de entrada la PLE, realizándose a continuación el cálculo por MEF-SNE de dicha pieza, que ahora está en régimen lineal. El general utiliza una homotopía que transforma de manera iterativa, unas leyes constitutivas lineales en las leyes no lineales del material. Cuando se combina con el MEF, la pieza lineal equivalente y la solución del problema original quedan determinadas al final de todo el proceso. Si bien el método general es un procedimiento próximo al de Newton- Raphson, presenta sobre éste la ventaja de permitir visualizar las deformaciones de la pieza en régimen no lineal, de manera tanto cualitativa como cuantitativa, ya que es posible observar en cada paso del proceso la modificación de rigideces (a flexión y cortante) y asimismo la evolución de las acciones ficticias. Por otra parte, los resultados obtenidos comparados con los publicados en la literatura, indican que el concepto PLE ofrece una forma directa y eficiente para analizar con muy buena precisión los problemas asociados a vigas y vigas-columna en las que por su tipología los efectos del cortante no pueden ser despreciados. ABSTRACT The structural concrete clearly remains the most used material in construction due to its strength, rigidity and structural design flexibility. The calculation of concrete structures using beams and beam-column is complex as consequence of the coupling phenomena between stresses and of its nonlinear behaviour. The models most commonly used for analysis are the Bernoulli-Euler and Timoshenko. The second model is strongly recommended when the relationship thickness/span is not small or in case the elements are heavily reinforced. The main objective of this thesis is to analyse the beam and beam-column elements with shear deformation in nonlinear regime, applying the concept of Equivalent Linear Structural Element (ELSE). This concept is basically to solve the problem of a structural element in nonlinear regime, transforming it into an equivalent linear structural element, so that both elements have the same deformations and the same stresses. Firstly, a comparative study of the various proposals of applying shear deformation, of various constitutive and sectional models of structural concrete, and of the nonlinear calculation methods (using finite element methods) was carried out. Considering that the resolution of nonlinear problem is based on solving the successive linear problem, using homotopy process, the linear problem of Timoshenko beam and beam-columns is resolved by FEM, using the exact nodal solutions (ENS) and equivalent distributed load of any order. Thus, the accurate solution approximation can be obtained with very few finite elements for not only nodes, but also for inside of elements. The concept ELSE is introduced to analyse a bar of nonlinear material, subjected to axial forces. The same bar is then used for other nonlinear beam and beam-column analysis with shear deformation. It is noted that, for the last analyses, the solution of a structural element in nonlinear regime is equal to that of linear regime, in which the piecewise-stiffness is constant, the moments and fictitious point loads need to be added at nodes of each element, as well as the fictitious distributed moment on element. Two methods have been developed for analysis: one for isostatic problem and other more general, applicable for both isostatic and hiperstatic problem. The first method determines the ELSE, and then the calculation of this piece is performed by FEM-ENS that now is in linear regime. The general method uses the homotopy that transforms iteratively linear constitutive laws into nonlinear laws of material. When combined with FEM, the ELSE and the solution of the original problem are determined at the end of the whole process. The general method is well known as a procedure closed to Newton-Raphson procedure but presents an advantage that allows displaying deformations of the piece in nonlinear regime, in both qualitative and quantitative way. Since it is possible to observe the modification of stiffness (flexural and shear) in each step of process and also the evolution of the fictitious actions. Moreover, the results compared with those published in the literature indicate that the ELSE concept offers a direct and efficient way to analyze with very good accuracy the problems associated with beams and beams columns in which, by typology, the effects of shear cannot be neglected.