2 resultados para Etiolation.
em Universidad Politécnica de Madrid
Resumo:
We recently put forth a model of a protochlorophyllide (Pchlide) light-harvesting complex operative during angiosperm seedling de-etiolation (Reinbothe, C., Lebedev, N., and Reinbothe, S. (1999) Nature 397, 80–84). This model, which was based on in vitro reconstitution experiments with zinc analogs of Pchlide a and Pchlide b and the two NADPH:protochlorophyllide oxidoreductases (PORs), PORA and PORB, of barley, predicted a 5-fold excess of Pchlide b, relative to Pchlide a, in the prolamellar body of etioplasts. Recent work (Scheumann, V., Klement, H., Helfrich, M., Oster, U., Schoch, S., and Rüdiger, W. (1999) FEBS Lett. 445, 445–448), however, contradicted this model and reported that Pchlide b would not be present in etiolated plants. Here we demonstrate that Pchlide b is an abundant pigment in barley etioplasts but is rather metabolically unstable. It is rapidly converted to Pchlide a by virtue of 7-formyl reductase activity, an enzyme that had previously been implicated in the chlorophyll (Chl) b to Chl a reaction cycle. Our findings suggest that etiolated plants make use of 7-formyl reductase to fine tune the levels of Pchlide b and Pchlidea and thereby may regulate the steady-state level of light-harvesting POR-Pchlide comple
Resumo:
NADPH:protochlorophyllide oxidoreductase is a key enzyme for the light-induced greening of etiolated angiosperm plants. In barley, two POR proteins exist termed PORA and PORB that have previously been proposed to structurally and functionally cooperate in terms of a higher molecular mass light-harvesting complex named LHPP, in the prolamellar body of etioplasts [Nature 397 (1999) 80]. In this study we examined the expression pattern of LHPP during seedling etiolation and de-etiolation under different experimental conditions. Our results show that LHPP is developmentally expressed across the barley leaf gradient. We further provide evidence that LHPP operates both in plants that etiolate completely before being exposed to white light and in plants that etiolate only partially and begin light-harvesting as soon as traces of light become available in the uppermost parts of the soil. As a result of light absorption, in either case LHPP converts Pchlide a to chlorophyllide (Chlide) a and in turn disintegrates. The released Chlide a, as well as Chlide b produced upon LHPP’s light-dependent dissociation, which leads to the activation of the PORA as a Pchlide b-reducing enzyme, then bind to homologs of water-soluble chlorophyll proteins of Brassicaceae. We propose that these proteins transfer Chlide a and Chlide b to the thylakoids, where their esterification with phytol and assembly into the photosynthetic membrane complexes ultimately takes place. Presumably due to the tight coupling of LHPP synthesis and degradation, as well as WSCP formation and photosynthetic membrane assembly, efficient photo-protection is conferred onto the plant.