3 resultados para Ethanol biofuel cell
em Universidad Politécnica de Madrid
Resumo:
The utilisation of biofuels in gas turbines is a promising alternative to fossil fuels for power generation. It would lead to significant reduction of CO2 emissions using an existing combustion technology, although significant changes seem to be needed and further technological development is necessary. The goal of this work is to perform energy and exergy analyses of the behaviour of gas turbines fired with biogas, ethanol and synthesis gas (bio-syngas), compared with natural gas. The global energy transformation process (i.e. from biomass to electricity) has also been studied. Furthermore, the potential reduction of CO2 emissions attained by the use of biofuels has been determined, considering the restrictions regarding biomass availability. Two different simulation tools have been used to accomplish the aims of this work. The results suggest a high interest and the technical viability of the use of Biomass Integrated Gasification Combined Cycle (BIGCC) systems for large scale power generation.
Resumo:
The Renewable Energy Directive (2009/28/EC) requires that 20% of the EU's energy needs should come from renewable sources by 2020, and includes a target for the transport sector of 10% from biofuels. This report analyses and discusses the global impacts of this biofuel target on agricultural production, markets and land use, as simulated by three agricultural sector models, AGLINK-COSIMO, ESIM and CAPRI. The impacts identified include higher EU production of ethanol and biodiesel, and of the crops used to produce them, as well as more imports of both biofuels. Trade flows of biofuel feedstocks also change to reflect greater EU demand, including a significant increase in vegetable oil imports. However, as the extra demand is small in world market terms, the impact on world market prices is limited. With the EU biofuel target, global use of land for crop cultivation is higher by 5.2 million hectares. About one quarter is area within the EU, some of which would otherwise have left agriculture.
Resumo:
The use of alcohol blends in direct alcohol fuel cells may be a more environmentally friendly and less toxic alternative to the use of methanol alone in direct methanol fuel cells. This paper assesses the behaviour of a direct methanol fuel cell fed with aqueous methanol, aqueous ethanol and aqueous methanol/ethanol blends in a long term experimental study followed by modelling of polarization curves. Fuel cell performance is seen to decrease as the ethanol content rises, and subsequent operation with aqueous methanol only partly reverts this loss of performance. It seems that the difference in the oxidation rate of these alcohols may not be the only factor affecting fuel cell performance.