1 resultado para Estatística Bayesiana

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

En esta tesis se desarrolla un modelo físico-matemático, original, que permite simular el comportamiento de las máquinas de visión, en particular las máquinas ópticas digitales, cuando reciben información a través de la luz reflejada por los mensurandos. El modelo desarrollado se lia aplicado para la determinación de los parámetros que intervienen en el proceso de caracterización de formas geométricas básicas, tales como líneas, círculos y elipses. También se analizan las fuentes de error que intervienen a lo largo de la cadena metrológica y se proponen modelos de estimación de las incertidumbres de medida a través un nuevo enfoque basado en estadística bayesiana y resolución subpíxel. La validez del modelo se ha comprobado por comparación de los resultados teóricos, obtenidos a partir de modelos virtuales y simulaciones informáticas, y los reales, obtenidos mediante la realización de medidas de diferentes mensurandos del ámbito electromecánico y de dimensiones submilimétricas. Utilizando el modelo propuesto, es posible caracterizar adecuadamente mensurandos a partir del filtrado, segmentación y tratamiento matemático de las imágenes. El estudio experimental y validación definitiva de los resultados se ha realizado en el Laboratorio de Metrología Dimensional de la Escuela Técnica Superior de Ingeniería y Diseño Industrial de la Universidad Politécnica de Madrid. Los modelos desarrollados se han implementado sobre imágenes obtenidas con la máquina de visión marca TESA, modelo VISIO 300. Abstract In this PhD Thesis an original mathematic-physic model has been developed. It allows simulating the behaviour of the vision measuring machines, in particular the optical digital machines, where they receive information through the light reflected by the measurands. The developed model has been applied to determine the parameters involved in the process of characterization of basic geometrical features such as lines, circles and ellipses. The error sources involved along the metrological chain also are analyzed and new models for estimating measurement uncertainties through a new approach based on Bayesian statistics and subpixel resolution are proposed. The validity of the model has been verified by comparing the theoretical results obtained from virtual models and computer simulations, with actual ones, obtained by measuring of various measurands belonging to the electromechanical field and of submillimeter dimensions. Using the proposed model, it is possible to properly characterize measurands from filtering, segmentation and mathematical processing of images. The experimental study and final validation of the results has been carried out in the "Laboratorio de Metrología Dimensional" (Dimensional Metrology Laboratory) at the Escuela Técnica Superior de Ingeniería y Diseño Industrial (ETSIDI) (School of Engineering and Industrial Design) at Universidad Politécnica de Madrid (UPM). The developed models have been implemented on images obtained with the vision measuring machine of the brand TESA, model VISIO 300.