4 resultados para Estado Novo, Neorrealismo, Surrealismo, Abstraçionismo, Pop Art e Optical Art

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finales de los 60 se había hecho evidente como la tecnificación del ambiente había permitido a algunas tipologías (supermercados, aparcamientos, fábricas) alcanzar profundidades construidas potencialmente ilimitadas e independizarse del afuera. La No-Stop City nace de una idea sencilla: extender esta tecnificación a la totalidad de lo construido para englobar, no sólo la práctica totalidad de funciones, sino, en última instancia, toda la ciudad. Esta operación tiene efectos paradójicos: a medida que la arquitectura crece, pierde la mayoría de características que la han definido tradicionalmente. Una disolución por hipertrofia que da lugar a un espacio homogéneo, cóncavo y potencialmente infinito. Pero, además de la pura factibilidad técnica, existen dos influencias clave y aparentemente contradictorias que explican esta apuesta por una ciudad interior e ilimitada: el marxismo y al Pop Art. El proyecto es, en muchos sentidos, un manifiesto construido que refleja la militancia de los miembros del grupo en el seno del marxismo italiano. Pero es también la plasmación del interés declarado del grupo por el Pop Art, la cultura popular y la sociedad de masas. La influencia cruzada de comunismo y consumismo explica esta “utopía cuantitativa” en la que se hacen coincidir la sociedad y la fábrica, la producción y el consumo. Una ciudad basada en la centralidad de los objetos de consumo y la subsiguiente pérdida de protagonismo de la arquitectura, en la que lo urbano, al tiempo que se extiende sin límites sobre el territorio, ignorando su exterioridad rural, disuelve el hogar como ámbito de privacidad, ignorando su interioridad doméstica. Un proyecto que, en la estela también de Marshall McLuhan, ilustra como pocos la conversión de lo urbano en una “condición” virtualmente omnipresente y que nos sigue interrogando con preguntas que son, por otra parte, eternas: ¿Qué es un edificio? ¿Qué es una ciudad?.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the late 60s it had become clear how the environment technification had allowed some typologies (supermarkets, car parks, factories) to reach potentially unlimited built depths becoming, therefore, independent from the outside. The No-Stop City is born from a very simple idea: to extend this technification to the totality of built reality encompassing, not only almost all functions, but ultimately, the whole city. This operation has paradoxical effects: as architecture grows, it loses most of the features that have traditionally defined it. A dissolution by hypertrophy that gives rise to an homogeneous, concave and potentially infinite space. But beyond the pure technical feasibility, there are two key influences, seemingly contradictory, that explain this endeavor for an interior and endless city: Marxism and Pop Art. The project is, in many senses, a built manifesto reflecting the militancy of the group members within the Italian Marxism. But it is also the embodiment of the groups declared interest in Pop Art, popular culture and mass society. The cross-influence of communism and consumerism explains this "quantitative utopia" in which the society and the factory, the production and consumption, would match. A city based on the centrality of consumer products and the subsequent loss of prominence of architecture, in which the urban phenomenon, while spreading endlessly over territory, ignoring its rural exteriority, dissolves the home as a sphere of privacy, ignoring its domestic interiority. A project, also in the wake of Marshall McLuhan, that illustrates like few others the conversion of the urbane into a virtually omnipresent "condition" and that still interrogates us with questions that are, on the other hand, eternal: What is a building? What is a city?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El desarrollo da las nuevas tecnologías permite a los ingenieros llevar al límite el funcionamiento de los circuitos integrados (Integrated Circuits, IC). Las nuevas generaciones de procesadores, DSPs o FPGAs son capaces de procesar la información a una alta velocidad, con un alto consumo de energía, o esperar en modo de baja potencia con el mínimo consumo posible. Esta gran variación en el consumo de potencia y el corto tiempo necesario para cambiar de un nivel al otro, afecta a las especificaciones del Módulo de Regulador de Tensión (Voltage Regulated Module, VRM) que alimenta al IC. Además, las características adicionales obligatorias, tales como adaptación del nivel de tensión (Adaptive Voltage Positioning, AVP) y escalado dinámico de la tensión (Dynamic Voltage Scaling, DVS), imponen requisitos opuestas en el diseño de la etapa de potencia del VRM. Para poder soportar las altas variaciones de los escalones de carga, el condensador de filtro de salida del VRM se ha de sobredimensionar, penalizando la densidad de energía y el rendimiento durante la operación de DVS. Por tanto, las actuales tendencias de investigación se centran en mejorar la respuesta dinámica del VRM, mientras se reduce el tamaño del condensador de salida. La reducción del condensador de salida lleva a menor coste y una prolongación de la vida del sistema ya que se podría evitar el uso de condensadores voluminosos, normalmente implementados con condensadores OSCON. Una ventaja adicional es que reduciendo el condensador de salida, el DVS se puede realizar más rápido y con menor estrés de la etapa de potencia, ya que la cantidad de carga necesaria para cambiar la tensión de salida es menor. El comportamiento dinámico del sistema con un control lineal (Control Modo Tensión, VMC, o Control Corriente de Pico, Peak Current Mode Control, PCMC,…) está limitado por la frecuencia de conmutación del convertidor y por el tamaño del filtro de salida. La reducción del condensador de salida se puede lograr incrementando la frecuencia de conmutación, así como incrementando el ancho de banda del sistema, y/o aplicando controles avanzados no-lineales. Usando esos controles, las variables del estado se saturan para conseguir el nuevo régimen permanente en un tiempo mínimo, así como el filtro de salida, más específicamente la pendiente de la corriente de la bobina, define la respuesta de la tensión de salida. Por tanto, reduciendo la inductancia de la bobina de salida, la corriente de bobina llega más rápido al nuevo régimen permanente, por lo que una menor cantidad de carga es tomada del condensador de salida durante el tránsito. El inconveniente de esa propuesta es que el rendimiento del sistema es penalizado debido al incremento de pérdidas de conmutación y las corrientes RMS. Para conseguir tanto la reducción del condensador de salida como el alto rendimiento del sistema, mientras se satisfacen las estrictas especificaciones dinámicas, un convertidor multifase es adoptado como estándar para aplicaciones VRM. Para asegurar el reparto de las corrientes entre fases, el convertidor multifase se suele implementar con control de modo de corriente. Para superar la limitación impuesta por el filtro de salida, la segunda posibilidad para reducir el condensador de salida es aplicar alguna modificación topológica (Topologic modifications) de la etapa básica de potencia para incrementar la pendiente de la corriente de bobina y así reducir la duración de tránsito. Como el transitorio se ha reducido, una menor cantidad de carga es tomada del condensador de salida bajo el mismo escalón de la corriente de salida, con lo cual, el condensador de salida se puede reducir para lograr la misma desviación de la tensión de salida. La tercera posibilidad para reducir el condensador de salida del convertidor es introducir un camino auxiliar de energía (additional energy path, AEP) para compensar el desequilibrio de la carga del condensador de salida reduciendo consecuentemente la duración del transitorio y la desviación de la tensión de salida. De esta manera, durante el régimen permanente, el sistema tiene un alto rendimiento debido a que el convertidor principal con bajo ancho de banda es diseñado para trabajar con una frecuencia de conmutación moderada para conseguir requisitos estáticos. Por otro lado, el comportamiento dinámico durante los transitorios es determinado por el AEP con un alto ancho de banda. El AEP puede ser implementado como un camino resistivo, como regulador lineal (Linear regulator, LR) o como un convertidor conmutado. Las dos primeras implementaciones proveen un mayor ancho de banda, acosta del incremento de pérdidas durante el transitorio. Por otro lado, la implementación del convertidor computado presenta menor ancho de banda, limitado por la frecuencia de conmutación, aunque produce menores pérdidas comparado con las dos anteriores implementaciones. Dependiendo de la aplicación, la implementación y la estrategia de control del sistema, hay una variedad de soluciones propuestas en el Estado del Arte (State-of-the-Art, SoA), teniendo diferentes propiedades donde una solución ofrece más ventajas que las otras, pero también unas desventajas. En general, un sistema con AEP ideal debería tener las siguientes propiedades: 1. El impacto del AEP a las pérdidas del sistema debería ser mínimo. A lo largo de la operación, el AEP genera pérdidas adicionales, con lo cual, en el caso ideal, el AEP debería trabajar por un pequeño intervalo de tiempo, solo durante los tránsitos; la otra opción es tener el AEP constantemente activo pero, por la compensación del rizado de la corriente de bobina, se generan pérdidas innecesarias. 2. El AEP debería ser activado inmediatamente para minimizar la desviación de la tensión de salida. Para conseguir una activación casi instantánea, el sistema puede ser informado por la carga antes del escalón o el sistema puede observar la corriente del condensador de salida, debido a que es la primera variable del estado que actúa a la perturbación de la corriente de salida. De esa manera, el AEP es activado con casi cero error de la tensión de salida, logrando una menor desviación de la tensión de salida. 3. El AEP debería ser desactivado una vez que el nuevo régimen permanente es detectado para evitar los transitorios adicionales de establecimiento. La mayoría de las soluciones de SoA estiman la duración del transitorio, que puede provocar un transitorio adicional si la estimación no se ha hecho correctamente (por ejemplo, si la corriente de bobina del convertidor principal tiene un nivel superior o inferior al necesitado, el regulador lento del convertidor principal tiene que compensar esa diferencia una vez que el AEP es desactivado). Otras soluciones de SoA observan las variables de estado, asegurando que el sistema llegue al nuevo régimen permanente, o pueden ser informadas por la carga. 4. Durante el transitorio, como mínimo un subsistema, o bien el convertidor principal o el AEP, debería operar en el lazo cerrado. Implementando un sistema en el lazo cerrado, preferiblemente el subsistema AEP por su ancho de banda elevado, se incrementa la robustez del sistema a los parásitos. Además, el AEP puede operar con cualquier tipo de corriente de carga. Las soluciones que funcionan en el lazo abierto suelen preformar el control de balance de carga con mínimo tiempo, así reducen la duración del transitorio y tienen un impacto menor a las pérdidas del sistema. Por otro lado, esas soluciones demuestran una alta sensibilidad a las tolerancias y parásitos de los componentes. 5. El AEP debería inyectar la corriente a la salida en una manera controlada, así se reduce el riesgo de unas corrientes elevadas y potencialmente peligrosas y se incrementa la robustez del sistema bajo las perturbaciones de la tensión de entrada. Ese problema suele ser relacionado con los sistemas donde el AEP es implementado como un convertidor auxiliar. El convertidor auxiliar es diseñado para una potencia baja, con lo cual, los dispositivos elegidos son de baja corriente/potencia. Si la corriente no es controlada, bajo un pico de tensión de entrada provocada por otro parte del sistema (por ejemplo, otro convertidor conectado al mismo bus), se puede llegar a un pico en la corriente auxiliar que puede causar la perturbación de tensión de salida e incluso el fallo de los dispositivos del convertidor auxiliar. Sin embargo, cuando la corriente es controlada, usando control del pico de corriente o control con histéresis, la corriente auxiliar tiene el control con prealimentación (feed-forward) de tensión de entrada y la corriente es definida y limitada. Por otro lado, si la solución utiliza el control de balance de carga, el sistema puede actuar de forma deficiente si la tensión de entrada tiene un valor diferente del nominal, provocando que el AEP inyecta/toma más/menos carga que necesitada. 6. Escalabilidad del sistema a convertidores multifase. Como ya ha sido comentado anteriormente, para las aplicaciones VRM por la corriente de carga elevada, el convertidor principal suele ser implementado como multifase para distribuir las perdidas entre las fases y bajar el estrés térmico de los dispositivos. Para asegurar el reparto de las corrientes, normalmente un control de modo corriente es usado. Las soluciones de SoA que usan VMC son limitadas a la implementación con solo una fase. Esta tesis propone un nuevo método de control del flujo de energía por el AEP y el convertidor principal. El concepto propuesto se basa en la inyección controlada de la corriente auxiliar al nodo de salida donde la amplitud de la corriente es n-1 veces mayor que la corriente del condensador de salida con las direcciones apropiadas. De esta manera, el AEP genera un condensador virtual cuya capacidad es n veces mayor que el condensador físico y reduce la impedancia de salida. Como el concepto propuesto reduce la impedancia de salida usando el AEP, el concepto es llamado Output Impedance Correction Circuit (OICC) concept. El concepto se desarrolla para un convertidor tipo reductor síncrono multifase con control modo de corriente CMC (incluyendo e implementación con una fase) y puede operar con la tensión de salida constante o con AVP. Además, el concepto es extendido a un convertidor de una fase con control modo de tensión VMC. Durante la operación, el control de tensión de salida de convertidor principal y control de corriente del subsistema OICC están siempre cerrados, incrementando la robustez a las tolerancias de componentes y a los parásitos del cirquito y permitiendo que el sistema se pueda enfrentar a cualquier tipo de la corriente de carga. Según el método de control propuesto, el sistema se puede encontrar en dos estados: durante el régimen permanente, el sistema se encuentra en el estado Idle y el subsistema OICC esta desactivado. Por otro lado, durante el transitorio, el sistema se encuentra en estado Activo y el subsistema OICC está activado para reducir la impedancia de salida. El cambio entre los estados se hace de forma autónoma: el sistema entra en el estado Activo observando la corriente de condensador de salida y vuelve al estado Idle cunado el nuevo régimen permanente es detectado, observando las variables del estado. La validación del concepto OICC es hecha aplicándolo a un convertidor tipo reductor síncrono con dos fases y de 30W cuyo condensador de salida tiene capacidad de 140μF, mientras el factor de multiplicación n es 15, generando en el estado Activo el condensador virtual de 2.1mF. El subsistema OICC es implementado como un convertidor tipo reductor síncrono con PCMC. Comparando el funcionamiento del convertidor con y sin el OICC, los resultados demuestran que se ha logrado una reducción de la desviación de tensión de salida con factor 12, tanto con funcionamiento básico como con funcionamiento AVP. Además, los resultados son comparados con un prototipo de referencia que tiene la misma etapa de potencia y un condensador de salida físico de 2.1mF. Los resultados demuestran que los dos sistemas tienen el mismo comportamiento dinámico. Más aun, se ha cuantificado el impacto en las pérdidas del sistema operando bajo una corriente de carga pulsante y bajo DVS. Se demuestra que el sistema con OICC mejora el rendimiento del sistema, considerando las pérdidas cuando el sistema trabaja con la carga pulsante y con DVS. Por lo último, el condensador de salida de sistema con OICC es mucho más pequeño que el condensador de salida del convertidor de referencia, con lo cual, por usar el concepto OICC, la densidad de energía se incrementa. En resumen, las contribuciones principales de la tesis son: • El concepto propuesto de Output Impedance Correction Circuit (OICC), • El control a nivel de sistema basado en el método usado para cambiar los estados de operación, • La implementación del subsistema OICC en lazo cerrado conjunto con la implementación del convertidor principal, • La cuantificación de las perdidas dinámicas bajo la carga pulsante y bajo la operación DVS, y • La robustez del sistema bajo la variación del condensador de salida y bajo los escalones de carga consecutiva. ABSTRACT Development of new technologies allows engineers to push the performance of the integrated circuits to its limits. New generations of processors, DSPs or FPGAs are able to process information with high speed and high consumption or to wait in low power mode with minimum possible consumption. This huge variation in power consumption and the short time needed to change from one level to another, affect the specifications of the Voltage Regulated Module (VRM) that supplies the IC. Furthermore, additional mandatory features, such as Adaptive Voltage Positioning (AVP) and Dynamic Voltage Scaling (DVS), impose opposite trends on the design of the VRM power stage. In order to cope with high load-step amplitudes, the output capacitor of the VRM power stage output filter is drastically oversized, penalizing power density and the efficiency during the DVS operation. Therefore, the ongoing research trend is directed to improve the dynamic response of the VRM while reducing the size of the output capacitor. The output capacitor reduction leads to a smaller cost and longer life-time of the system since the big bulk capacitors, usually implemented with OSCON capacitors, may not be needed to achieve the desired dynamic behavior. An additional advantage is that, by reducing the output capacitance, dynamic voltage scaling (DVS) can be performed faster and with smaller stress on the power stage, since the needed amount of charge to change the output voltage is smaller. The dynamic behavior of the system with a linear control (Voltage mode control, VMC, Peak Current Mode Control, PCMC,…) is limited by the converter switching frequency and filter size. The reduction of the output capacitor can be achieved by increasing the switching frequency of the converter, thus increasing the bandwidth of the system, and/or by applying advanced non-linear controls. Applying nonlinear control, the system variables get saturated in order to reach the new steady-state in a minimum time, thus the output filter, more specifically the output inductor current slew-rate, determines the output voltage response. Therefore, by reducing the output inductor value, the inductor current reaches faster the new steady state, so a smaller amount of charge is taken from the output capacitor during the transient. The drawback of this approach is that the system efficiency is penalized due to increased switching losses and RMS currents. In order to achieve both the output capacitor reduction and high system efficiency, while satisfying strict dynamic specifications, a Multiphase converter system is adopted as a standard for VRM applications. In order to ensure the current sharing among the phases, the multiphase converter is usually implemented with current mode control. In order to overcome the limitation imposed by the output filter, the second possibility to reduce the output capacitor is to apply Topologic modifications of the basic power stage topology in order to increase the slew-rate of the inductor current and, therefore, reduce the transient duration. Since the transient is reduced, smaller amount of charge is taken from the output capacitor under the same load current, thus, the output capacitor can be reduced to achieve the same output voltage deviation. The third possibility to reduce the output capacitor of the converter is to introduce an additional energy path (AEP) to compensate the charge unbalance of the output capacitor, consequently reducing the transient time and output voltage deviation. Doing so, during the steady-state operation the system has high efficiency because the main low-bandwidth converter is designed to operate at moderate switching frequency, to meet the static requirements, whereas the dynamic behavior during the transients is determined by the high-bandwidth auxiliary energy path. The auxiliary energy path can be implemented as a resistive path, as a Linear regulator, LR, or as a switching converter. The first two implementations provide higher bandwidth, at the expense of increasing losses during the transient. On the other hand, the switching converter implementation presents lower bandwidth, limited by the auxiliary converter switching frequency, though it produces smaller losses compared to the two previous implementations. Depending on the application, the implementation and the control strategy of the system, there is a variety of proposed solutions in the State-of-the-Art (SoA), having different features where one solution offers some advantages over the others, but also some disadvantages. In general, an ideal additional energy path system should have the following features: 1. The impact on the system losses should be minimal. During its operation, the AEP generates additional losses, thus ideally, the AEP should operate for a short period of time, only when the transient is occurring; the other option is to have the AEP constantly on, but due to the inductor current ripple compensation at the output, unnecessary losses are generated. 2. The AEP should be activated nearly instantaneously to prevent bigger output voltage deviation. To achieve near instantaneous activation, the converter system can be informed by the load prior to the load-step or the system can observe the output capacitor current, which is the first system state variable that reacts on the load current perturbation. In this manner, the AEP is turned on with near zero output voltage error, providing smaller output voltage deviation. 3. The AEP should be deactivated once the new steady state is reached to avoid additional settling transients. Most of the SoA solutions estimate duration of the transient which may cause additional transient if the estimation is not performed correctly (e.g. if the main converter inductor current has higher or lower value than needed, the slow regulator of the main converter needs to compensate the difference after the AEP is deactivated). Other SoA solutions are observing state variables, ensuring that the system reaches the new steady state or they are informed by the load. 4. During the transient, at least one subsystem, either the main converter or the AEP, should be in closed-loop. Implementing a closed loop system, preferably the AEP subsystem, due its higher bandwidth, increases the robustness under system tolerances and circuit parasitic. In addition, the AEP can operate with any type of load. The solutions that operate in open loop usually perform minimum time charge balance control, thus reducing the transient length and minimizing the impact on the losses, however they are very sensitive to tolerances and parasitics. 5. The AEP should inject current at the output in a controlled manner, thus reducing the risk of high and potentially damaging currents and increasing robustness on the input voltage deviation. This issue is mainly related to the systems where AEP is implemented as auxiliary converter. The auxiliary converter is designed for small power and, as such, the MOSFETs are rated for small power/currents. If the current is not controlled, due to the some unpredicted spike in input voltage caused by some other part of the system (e.g. different converter), it may lead to a current spike in auxiliary current which will cause the perturbation of the output voltage and even failure of the switching components of auxiliary converter. In the case when the current is controlled, using peak CMC or Hysteretic Window CMC, the auxiliary converter has inherent feed-forwarding of the input voltage in current control and the current is defined and limited. Furthermore, if the solution employs charge balance control, the system may perform poorly if the input voltage has different value than the nominal, causing that AEP injects/extracts more/less charge than needed. 6. Scalability of the system to multiphase converters. As commented previously, in VRM applications, due to the high load currents, the main converters are implemented as multiphase to redistribute losses among the modules, lowering temperature stress of the components. To ensure the current sharing, usually a Current Mode Control (CMC) is employed. The SoA solutions that are implemented with VMC are limited to a single stage implementation. This thesis proposes a novel control method of the energy flow through the AEP and the main converter system. The proposed concept relays on a controlled injection of the auxiliary current at the output node where the instantaneous current value is n-1 times bigger than the output capacitor current with appropriate directions. Doing so, the AEP creates an equivalent n times bigger virtual capacitor at the output, thus reducing the output impedance. Due to the fact that the proposed concept reduces the output impedance using the AEP, it has been named the Output Impedance Correction Circuit (OICC) concept. The concept is developed for a multiphase CMC synchronous buck converter (including a single phase implementation), operating with a constant output voltage and with AVP feature. Further, it is extended to a single phase VMC synchronous buck converter. During the operation, the main converter voltage loop and the OICC subsystem capacitor current loop is constantly closed, increasing the robustness under system tolerances and circuit parasitic and allowing the system to operate with any load-current shape or pattern. According to the proposed control method, the system operates in two states: during the steady-state the system is in the Idle state and the OICC subsystem is deactivated, while during the load-step transient the system is in the Active state and the OICC subsystem is activated in order to reduce the output impedance. The state changes are performed autonomously: the system enters in the Active state by observing the output capacitor current and it returns back to the Idle state when the steady-state operation is detected by observing the state variables. The validation of the OICC concept has been done by applying it to a 30W two phase synchronous buck converter with 140μF output capacitor and with the multiplication factor n equal to 15, generating during the Active state equivalent output capacitor of 2.1mF. The OICC subsystem is implemented as single phase PCMC synchronous buck converter. Comparing the converter operation with and without the OICC the results demonstrate that the 12 times reduction of the output voltage deviation is achieved, for both basic operation and for the AVP operation. Furthermore, the results have been compared to a reference prototype which has the same power stage and a fiscal output capacitor of 2.1mF. The results show that the two systems have the same dynamic behavior. Moreover, an impact on the system losses under the pulsating load and DVS operation has been quantified and it has been demonstrated that the OICC system has improved the system efficiency, considering the losses when the system operates with the pulsating load and the DVS operation. Lastly, the output capacitor of the OICC system is much smaller than the reference design output capacitor, therefore, by applying the OICC concept the power density can be increased. In summary, the main contributions of the thesis are: • The proposed Output Impedance Correction Circuit (OICC) concept, • The system level control based on the used approach to change the states of operation, • The OICC subsystem closed-loop implementation, together with the main converter implementation, • The dynamic losses under the pulsating load and the DVS operation quantification, and • The system robustness on the capacitor impedance variation and consecutive load-steps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesis estudia en detalle la Hunstanton Secondary School y su trascendencia. Así, se trata de analizar el conjunto de procesos que hace que esta obra sea entendida como el manifiesto construido del Nuevo Brutalismo en Inglaterra. La Escuela en Hunstanton fue la primera obra proyectada y construida por los Smithson y, si se considera que el legado que dejaron Alison y Peter fue más de carácter teórico que constructivo, ésta se ha convertido en un edificio relevante dentro de su trayectoria profesional. Además, el rigor con el que fue realizado el proyecto y la ratificación de las ideas que subyacían tras él, a pesar del extenso intervalo temporal que caracterizó su proceso constructivo, hacen que esta obra se convierta en una síntesis de la filosofía arquitectónica gestada en Inglaterra tras la guerra. Por otro lado, hay que contemplar que la sencillez del lenguaje constructivo empleado, viene dada por la compleja reiteración de los sistemas proyectuales tipo que formulan para este proyecto y el establecimiento de una gramática casi matemática. La sistematización de su vocabulario hace que, tras el análisis de su arquitectura, se encuentren nuevos parámetros capaces de documentar este momento de la historia de la arquitectura en Inglaterra. La envolvente del edificio constituye al tiempo fachada y estructura. Esta característica ha pasado inadvertida cuando, en numerosas ocasiones y durante seis décadas, se han venido publicando las fotografías de la obra terminada y los dibujos que los Smithson habían realizado en la fase de proyecto. Como consecuencia, ha proliferado el conocimiento de la arquitectura de la escuela a un nivel más superficial, mostrando el resultado formal de la misma y con ello, simplemente se ha dejado intuir la gran influencia que Mies Van der Rohe provocó en los Smithson en los primeros años de desarrollo de su labor como arquitectos. El objetivo principal de esta tesis es, por tanto, facilitar el entendimiento del espacio que propusieron los Smithson a partir del análisis pormenorizado de los distintos sistemas constructivos empleados y del equipo personal que se vio implicado en su construcción. Para ello, es necesario abordar el estudio de los materiales y mecanismos proyectuales que hicieron posible que este conjunto de espacios –interiores y exteriores- resultase definido a través de la relación entre dos variables: una evidente austeridad en la utilización de los materiales y la combinación de los distintos sistemas intervinientes a partir del recurso de la repetición. La Escuela de Hunstanton, a pesar de las inoportunas intervenciones realizadas para adaptar el centro a unas necesidades derivadas de su número de alumnos actual (el doble que en su inicio), continúa proclamando su integridad espacial. Partiendo de la hipótesis de que la arquitectura de la Secondary School en Hunstanton, representa el manifiesto construido del Nuevo Brutalismo en Inglaterra, se concluye que el resultado de su construcción fue consecuencia de numerosas influencias que, en relación con los Smithson, estuvieron presentes durante los años en que se gestó. Algo que va más allá de la conclusión de aquellos debates arquitectónicos que se habían emprendido, por escrito, en las distintas revistas locales de arquitectura. Los mecanismos compositivos empleados, también habían tenido mucho que ver con lo que los historiadores del arte habían venido aportando a la historia de la arquitectura hasta ese momento. Desde los años 40, éstos últimos habían emprendido una nueva manera de contar la historia en la que quedaba fuertemente involucrada su capacidad crítica, provocando interferencias en la mentalidad de los arquitectos de nueva generación y otorgándoles un bagaje cultural subliminalmente determinado y subjetivo. Por supuesto, en el resultado arquitectónico final, también tuvieron mucho que ver los recursos materiales de que se disponía en aquel momento. Así como la optimización de los mismos a través de la adopción de nuevas metodologías de trabajo como puede ser la organización multidisciplinar. La inclusión del ingeniero Ronald Jenkins en el equipo de trabajo de los Smithson supuso una gran oportunidad. Este ingeniero, propuso poner en práctica la entonces innovadora Teoría Plástica en la metodología de cálculo estructural y, con ello consiguió enriquecer el resultado espacial, posibilitando la percepción de una arquitectura ligera –a pesar de sus grandes dimensiones- y vinculada al paisaje donde se inserta. Pero todos estos condicionantes fueron pasados a su vez por el filtro del deseo de una regeneración social, que buscaba el modelo de la sociedad americana. El Buen Vivir que propugnaban los americanos, viajaba a Europa de la mano de la publicidad. Y, al igual que la componente publicitaria tuvo algo que ver en el proceso creativo de la arquitectura de la escuela, también lo tuvo el conocimiento del arte pop y sus recursos compositivos. ABSTRACT The thesis examines in detail the project of Hunstanton Secondary School and the architectural language’s significance used in it. Thus, it is reinterpreting the set of processes that makes this work to be understood as the “built manifesto” of the English New Brutalism. Hunstanton School’s project was the first work designed and built by the Smithsons and, considering their legacy -more theoretical than constructed-, make of this building an important work within their career. In addition, the rigor with which it was carried out the project and the ratification of the ideas lying behind him, make this work becomes a synthesis of the architectural philosophy gestated in England after the war, despite the extensive time interval that characterized its construction process. On the other hand, it must be considered the simplicity of the constructive language used in this project. It is given by the complex projective repetition of the type systems and by the establishment of a quasi-mathematical grammar. The systematization of its vocabulary makes, after a deep analysis of its architecture, to recognize new parameters able to document this moment in the history of English architecture. The building envelope is, at the same time, facade and structure. This feature has been overlooked when many photographs of the finished work and its drawings -made by the Smithsons during the design phase- has been exposed over six decades. As a result, it has proliferated the knowledge of Hunstanton Secondary Modern School’s architecture as a more superficial level, just by showing the formal outcome of its project and thus simply been left the sensation of the great influence that Mies Van der Rohe provocated in the Smithson thinking during their first years of developing his work as architects. Therefore, the main objective of this thesis is to facilitate an understanding of the Smithsons’ proposed space. This is made possible through the detailed analysis of the different systems used in it and, by understanding the knowledge of the team involved in its construction. To prove this, it is necessary to pay attention to the study of the materials and to different project mechanisms that make possible to this group of spaces -inner and outer- be defined through the game played by two variables: an apparent austerity in the use of materials and the combination of the various participant systems through the resource of repetition. Despite the untimely interventions made in order to adapt the center to the new needs (the large increase in the number of students), Hunstanton School’s building continues proclaiming its spatial integrity. Assuming that Hunstanton Secondary School’s architecture represents the manifesto of New Brutalism in England, it is concluded that the result of its construction was the result of numerous influences that, in connection with the Smithsons, were present during the years in which its project was conceived. This meaning goes beyond the conclusions made from the architectural debate that was published in many of local architectural magazines. The compositional mechanisms employed, are also linked to what art historians had contributed to the history of architecture until then. Since the 40s, historians had undertaken a new way to tell History. This new mode strongly implied its critical capacity. All this, was causing interferences in the mentality of the architects of the new generation and, giving them a subliminally determined and very subjective cultural background. Of course, the final architectural result had much to do with the material resources available at that time and, with its optimization through the adoption of new working methods as the multidisciplinary organization. The inclusion of engineer Ronald Jenkins in the team of the Smithsons was a great opportunity. He proposed to implement the new Plastic Theory in the structural calculation and thereby he got enrich the spatial results achieved, by enabling the perception of a lightweight construction, despite its large size and, linked to the landscape where it is inserted. But all these conditions were passed through the filter of social regeneration’s desire, following the American society’s model. This American model travelled to Europe in the hands of advertising. And, in the same way that publicity had something to do with the creative process of this architecture, also had a lot to do the knowledge of pop art and its compositional resources.