7 resultados para Error estimate.
em Universidad Politécnica de Madrid
Resumo:
The aim of this paper was to accurately estimate the local truncation error of partial differential equations, that are numerically solved using a finite difference or finite volume approach on structured and unstructured meshes. In this work, we approximated the local truncation error using the @t-estimation procedure, which aims to compare the residuals on a sequence of grids with different spacing. First, we focused the analysis on one-dimensional scalar linear and non-linear test cases to examine the accuracy of the estimation of the truncation error for both finite difference and finite volume approaches on different grid topologies. Then, we extended the analysis to two-dimensional problems: first on linear and non-linear scalar equations and finally on the Euler equations. We demonstrated that this approach yields a highly accurate estimation of the truncation error if some conditions are fulfilled. These conditions are related to the accuracy of the restriction operators, the choice of the boundary conditions, the distortion of the grids and the magnitude of the iteration error.
Resumo:
Mesh adaptation based on error estimation has become a key technique to improve th eaccuracy o fcomputational-fluid-dynamics computations. The adjoint-based approach for error estimation is one of the most promising techniques for computational-fluid-dynamics applications. Nevertheless, the level of implementation of this technique in the aeronautical industrial environment is still low because it is a computationally expensive method. In the present investigation, a new mesh refinement method based on estimation of truncation error is presented in the context of finite-volume discretization. The estimation method uses auxiliary coarser meshes to estimate the local truncation error, which can be used for driving an adaptation algorithm. The method is demonstrated in the context of two-dimensional NACA0012 and three-dimensional ONERA M6 wing inviscid flows, and the results are compared against the adjoint-based approach and physical sensors based on features of the flow field.
Resumo:
The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL), the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method.
Resumo:
El objetivo final de las investigaciones recogidas en esta tesis doctoral es la estimación del volumen de hielo total de los ms de 1600 glaciares de Svalbard, en el Ártico, y, con ello, su contribución potencial a la subida del nivel medio del mar en un escenario de calentamiento global. Los cálculos más exactos del volumen de un glaciar se efectúan a partir de medidas del espesor de hielo obtenidas con georradar. Sin embargo, estas medidas no son viables para conjuntos grandes de glaciares, debido al coste, dificultades logísticas y tiempo requerido por ellas, especialmente en las regiones polares o de montaña. Frente a ello, la determinación de áreas de glaciares a partir de imágenes de satélite sí es viable a escalas global y regional, por lo que las relaciones de escala volumen-área constituyen el mecanismo más adecuado para las estimaciones de volúmenes globales y regionales, como las realizadas para Svalbard en esta tesis. Como parte del trabajo de tesis, hemos elaborado un inventario de los glaciares de Svalbard en los que se han efectuado radioecosondeos, y hemos realizado los cálculos del volumen de hielo de más de 80 cuencas glaciares de Svalbard a partir de datos de georradar. Estos volúmenes han sido utilizados para calibrar las relaciones volumen-área desarrolladas en la tesis. Los datos de georradar han sido obtenidos en diversas campañas llevadas a cabo por grupos de investigación internacionales, gran parte de ellas lideradas por el Grupo de Simulación Numérica en Ciencias e Ingeniería de la Universidad Politécnica de Madrid, del que forman parte la doctoranda y los directores de tesis. Además, se ha desarrollado una metodología para la estimación del error en el cálculo de volumen, que aporta una novedosa técnica de cálculo del error de interpolación para conjuntos de datos del tipo de los obtenidos con perfiles de georradar, que presentan distribuciones espaciales con unos patrones muy característicos pero con una densidad de datos muy irregular. Hemos obtenido en este trabajo de tesis relaciones de escala específicas para los glaciares de Svalbard, explorando la sensibilidad de los parámetros a diferentes morfologías glaciares, e incorporando nuevas variables. En particular, hemos efectuado experimentos orientados a verificar si las relaciones de escala obtenidas caracterizando los glaciares individuales por su tamaño, pendiente o forma implican diferencias significativas en el volumen total estimado para los glaciares de Svalbard, y si esta partición implica algún patrón significativo en los parámetros de las relaciones de escala. Nuestros resultados indican que, para un valor constante del factor multiplicativo de la relacin de escala, el exponente que afecta al área en la relación volumen-área decrece según aumentan la pendiente y el factor de forma, mientras que las clasificaciones basadas en tamaño no muestran un patrón significativo. Esto significa que los glaciares con mayores pendientes y de tipo circo son menos sensibles a los cambios de área. Además, los volúmenes de la población total de los glaciares de Svalbard calculados con fraccionamiento en grupos por tamaño y pendiente son un 1-4% menores que los obtenidas usando la totalidad de glaciares sin fraccionamiento en grupos, mientras que los volúmenes calculados fraccionando por forma son un 3-5% mayores. También realizamos experimentos multivariable para obtener estimaciones óptimas del volumen total mediante una combinación de distintos predictores. Nuestros resultados muestran que un modelo potencial simple volumen-área explica el 98.6% de la varianza. Sólo el predictor longitud del glaciar proporciona significación estadística cuando se usa además del área del glaciar, aunque el coeficiente de determinación disminuye en comparación con el modelo más simple V-A. El predictor intervalo de altitud no proporciona información adicional cuando se usa además del área del glaciar. Nuestras estimaciones del volumen de la totalidad de glaciares de Svalbard usando las diferentes relaciones de escala obtenidas en esta tesis oscilan entre 6890 y 8106 km3, con errores relativos del orden de 6.6-8.1%. El valor medio de nuestras estimaciones, que puede ser considerado como nuestra mejor estimación del volumen, es de 7.504 km3. En términos de equivalente en nivel del mar (SLE), nuestras estimaciones corresponden a una subida potencial del nivel del mar de 17-20 mm SLE, promediando 19_2 mm SLE, donde el error corresponde al error en volumen antes indicado. En comparación, las estimaciones usando las relaciones V-A de otros autores son de 13-26 mm SLE, promediando 20 _ 2 mm SLE, donde el error representa la desviación estándar de las distintas estimaciones. ABSTRACT The final aim of the research involved in this doctoral thesis is the estimation of the total ice volume of the more than 1600 glaciers of Svalbard, in the Arctic region, and thus their potential contribution to sea-level rise under a global warming scenario. The most accurate calculations of glacier volumes are those based on ice-thicknesses measured by groundpenetrating radar (GPR). However, such measurements are not viable for very large sets of glaciers, due to their cost, logistic difficulties and time requirements, especially in polar or mountain regions. On the contrary, the calculation of glacier areas from satellite images is perfectly viable at global and regional scales, so the volume-area scaling relationships are the most useful tool to determine glacier volumes at global and regional scales, as done for Svalbard in this PhD thesis. As part of the PhD work, we have compiled an inventory of the radio-echo sounded glaciers in Svalbard, and we have performed the volume calculations for more than 80 glacier basins in Svalbard from GPR data. These volumes have been used to calibrate the volume-area relationships derived in this dissertation. Such GPR data have been obtained during fieldwork campaigns carried out by international teams, often lead by the Group of Numerical Simulation in Science and Engineering of the Technical University of Madrid, to which the PhD candidate and her supervisors belong. Furthermore, we have developed a methodology to estimate the error in the volume calculation, which includes a novel technique to calculate the interpolation error for data sets of the type produced by GPR profiling, which show very characteristic data distribution patterns but with very irregular data density. We have derived in this dissertation scaling relationships specific for Svalbard glaciers, exploring the sensitivity of the scaling parameters to different glacier morphologies and adding new variables. In particular, we did experiments aimed to verify whether scaling relationships obtained through characterization of individual glacier shape, slope and size imply significant differences in the estimated volume of the total population of Svalbard glaciers, and whether this partitioning implies any noticeable pattern in the scaling relationship parameters. Our results indicate that, for a fixed value of the factor in the scaling relationship, the exponent of the area in the volume-area relationship decreases as slope and shape increase, whereas size-based classifications do not reveal any clear trend. This means that steep slopes and cirque-type glaciers are less sensitive to changes in glacier area. Moreover, the volumes of the total population of Svalbard glaciers calculated according to partitioning in subgroups by size and slope are smaller (by 1-4%) than that obtained considering all glaciers without partitioning into subgroups, whereas the volumes calculated according to partitioning in subgroups by shape are 3-5% larger. We also did multivariate experiments attempting to optimally predict the volume of Svalbard glaciers from a combination of different predictors. Our results show that a simple power-type V-A model explains 98.6% of the variance. Only the predictor glacier length provides statistical significance when used in addition to the predictor glacier area, though the coefficient of determination decreases as compared with the simpler V-A model. The predictor elevation range did not provide any additional information when used in addition to glacier area. Our estimates of the volume of the entire population of Svalbard glaciers using the different scaling relationships that we have derived along this thesis range within 6890-8106 km3, with estimated relative errors in total volume of the order of 6.6-8.1% The average value of all of our estimates, which could be used as a best estimate for the volume, is 7,504 km3. In terms of sea-level equivalent (SLE), our volume estimates correspond to a potential contribution to sea-level rise within 17-20 mm SLE, averaging 19 _ 2 mm SLE, where the quoted error corresponds to our estimated relative error in volume. For comparison, the estimates using the V-A scaling relations found in the literature range within 13-26 mm SLE, averaging 20 _ 2 mm SLE, where the quoted error represents the standard deviation of the different estimates.
Resumo:
The assessment of the glacier thickness is one of the most widespread applications of radioglaciology, and is the basis for estimating the glacier volume. The accuracy of the measurement of ice thickness, the distribution of profiles over the glacier and the accuracy of the boundary delineation of the glacier are the most important factors determining the error in the evaluation of the glacier volume. The aim of this study is to get an accurate estimate of the error incurred in the estimate of glacier volume from GPR-retrieved ice-thickness data.
Resumo:
En esta tesis, el método de estimación de error de truncación conocido como restimation ha sido extendido de esquemas de bajo orden a esquemas de alto orden. La mayoría de los trabajos en la bibliografía utilizan soluciones convergidas en mallas de distinto refinamiento para realizar la estimación. En este trabajo se utiliza una solución en una única malla con distintos órdenes polinómicos. Además, no se requiere que esta solución esté completamente convergida, resultando en el método conocido como quasi-a priori T-estimation. La aproximación quasi-a priori estima el error mientras el residuo del método iterativo no es despreciable. En este trabajo se demuestra que algunas de las hipótesis fundamentales sobre el comportamiento del error, establecidas para métodos de bajo orden, dejan de ser válidas en esquemas de alto orden, haciendo necesaria una revisión completa del comportamiento del error antes de redefinir el algoritmo. Para facilitar esta tarea, en una primera etapa se considera el método conocido como Chebyshev Collocation, limitando la aplicación a geometrías simples. La extensión al método Discontinuouos Galerkin Spectral Element Method presenta dificultades adicionales para la definición precisa y la estimación del error, debidos a la formulación débil, la discretización multidominio y la formulación discontinua. En primer lugar, el análisis se enfoca en leyes de conservación escalares para examinar la precisión de la estimación del error de truncación. Después, la validez del análisis se demuestra para las ecuaciones incompresibles y compresibles de Euler y Navier Stokes. El método de aproximación quasi-a priori r-estimation permite desacoplar las contribuciones superficiales y volumétricas del error de truncación, proveyendo información sobre la anisotropía de las soluciones así como su ratio de convergencia con el orden polinómico. Se demuestra que esta aproximación quasi-a priori produce estimaciones del error de truncación con precisión espectral. ABSTRACT In this thesis, the τ-estimation method to estimate the truncation error is extended from low order to spectral methods. While most works in the literature rely on fully time-converged solutions on grids with different spacing to perform the estimation, only one grid with different polynomial orders is used in this work. Furthermore, a non timeconverged solution is used resulting in the quasi-a priori τ-estimation method. The quasi-a priori approach estimates the error when the residual of the time-iterative method is not negligible. It is shown in this work that some of the fundamental assumptions about error tendency, well established for low order methods, are no longer valid in high order schemes, making necessary a complete revision of the error behavior before redefining the algorithm. To facilitate this task, the Chebyshev Collocation Method is considered as a first step, limiting their application to simple geometries. The extension to the Discontinuous Galerkin Spectral Element Method introduces additional features to the accurate definition and estimation of the error due to the weak formulation, multidomain discretization and the discontinuous formulation. First, the analysis focuses on scalar conservation laws to examine the accuracy of the estimation of the truncation error. Then, the validity of the analysis is shown for the incompressible and compressible Euler and Navier Stokes equations. The developed quasi-a priori τ-estimation method permits one to decouple the interfacial and the interior contributions of the truncation error in the Discontinuous Galerkin Spectral Element Method, and provides information about the anisotropy of the solution, as well as its rate of convergence in polynomial order. It is demonstrated here that this quasi-a priori approach yields a spectrally accurate estimate of the truncation error.
Resumo:
In this paper we show how to accurately perform a quasi-a priori estimation of the truncation error of steady-state solutions computed by a discontinuous Galerkin spectral element method. We estimate the spatial truncation error using the ?-estimation procedure. While most works in the literature rely on fully time-converged solutions on grids with different spacing to perform the estimation, we use non time-converged solutions on one grid with different polynomial orders. The quasi-a priori approach estimates the error while the residual of the time-iterative method is not negligible. Furthermore, the method permits one to decouple the surface and the volume contributions of the truncation error, and provides information about the anisotropy of the solution as well as its rate of convergence in polynomial order. First, we focus on the analysis of one dimensional scalar conservation laws to examine the accuracy of the estimate. Then, we extend the analysis to two dimensional problems. We demonstrate that this quasi-a priori approach yields a spectrally accurate estimate of the truncation error.