10 resultados para Engineering schools

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

At present, in the University curricula in most countries, the decision theory and the mathematical models to aid decision making is not included, as in the graduate program like in Doctored and Master´s programs. In the Technical School of High Level Agronomic Engineers of the Technical University of Madrid (ETSIA-UPM), the need to offer to the future engineers training in a subject that could help them to take decisions in their profession was felt. Along the life, they will have to take a lot of decisions. Ones, will be important and others no. In the personal level, they will have to take several very important decisions, like the election of a career, professional work, or a couple, but in the professional field, the decision making is the main role of the Managers, Politicians and Leaders. They should be decision makers and will be paid for it. Therefore, nobody can understand that such a professional that is called to practice management responsibilities in the companies, does not take training in such an important matter. For it, in the year 2000, it was requested to the University Board to introduce in the curricula an optional qualified subject of the second cycle with 4,5 credits titled " Mathematical Methods for Making Decisions ". A program was elaborated, the didactic material prepared and programs as Maple, Lingo, Math Cad, etc. installed in several IT classrooms, where the course will be taught. In the course 2000-2001 this subject was offered with a great acceptance that exceeded the forecasts of capacity and had to be prepared more classrooms. This course in graduate program took place in the Department of Applied Mathematics to the Agronomic Engineering, as an extension of the credits dedicated to Mathematics in the career of Engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic Control Teaching in the new degree syllabus has reduced both, its contents and its implementation course, with regard to traditional engineering careers. On the other hand, where the qualification is not considered as automatic control specialist, it is required an adapted methodology to provide the minimum contents that the student needs to assimilate, even in the case that students do not perceive these contents as the most important in their future career. In this paper we present the contents of a small automatic course taught Naval Architecture and Marine Engineering Degrees at the School of Naval Engineering of the Polytechnic University of Madrid. We have included the contents covered using the proposed methodology which is based on practical work after lectures. Firstly, the students performed exercises by hand. Secondly, they solve the exercises using informatics support tools, and finally, they validate their previous results and their knowledge in the laboratory platforms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyzes an ideal model of teaching, thinking after 5-10 years in Universities in the world. We propose the collaborative work for a fruitful learning. According with that, we expose some of our previous projects in this area and some ideas for the ?global education?, focused on the teaching and learning of mathematics to engineering students. Furthermore we explain some of our initiatives for implementing the "Bologna process?. Aspects related to the learning and assessments will be analyzed. The establishment of the new teaching paradigm has to change the learning process and we will suggest some possible initiatives for adapting the learning to the new model. The paper ends by collecting some conclusions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Systems Engineering (SE in the following) has not received much attention as a subject matter in engineering curricula. There are several dozens of universities around the world offering programs (most of them at the graduate level) on systems science and engineering. However, SE is, per se, rarely found among the courses offered by engineering schools. This observation does not strictly mean that systems concepts be left apart. For example, it is usual to find specialized courses for systems of some particular classes (e.g., courses on software systems engineering for computing curricula) or for particular phases of the system life cycle (e.g., courses on systems analysis). Even so, these kinds of courses tend to over-emphasize the importance of specific methodologies and, in consequence, to deviate the attention from the realm of systernness

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current trends in the European Higher Education Area (EHEA) are moving towards the continuous evaluation of the students in substitution of the traditional evaluation based on a single test or exam. This fact and the increase in the number of students during last years in Engineering Schools, requires to modify evaluation procedures making them compatible with the educational and research activities. This work presents a methodology for the automatic generation of questions. These questions can be used as self assessment questions by the student and/or as queries by the teacher. The proposed approach is based on the utilization of parametric questions, formulated as multiple choice questions and generated and supported by the utilization of common programs of data sheets and word processors. Through this approach, every teacher can apply the proposed methodology without the use of programs or tools different from those normally used in his/her daily activity

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evolution of industrial society to a knowledge society has provided the ideal scenario for the evolution of higher education which has undergone severe changes in the last quarter century. Some of these events are setting new trends, with mobility and academic exchange being some of them. This article aims to formulate a proposal for an exchange program for students from engineering schools in Latin America and the Caribbean, taking as reference the ATHENS Program developed in Europe with considerable success. The proposal is mainly characterized by being a student mobility program to develop intensive courses for short periods of time in various subject areas in the field of engineering, with the aim of making available to more students the benefits of academic mobility for the integral development of the participants. Keywords ? Academic mobility, Student mobility program, ATHENS Programme, Schools of engineering.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este proyecto se ha enmarcado en la línea de desarrollo del Laboratorio Virtual de electrónica, desarrollado en la Escuela Universitaria de Ingeniería Técnica de Telecomunicación (EUITT), de la Universidad Politécnica de Madrid (UPM). Con el Laboratorio Virtual los alumnos de la universidad, de cualquiera de las escuelas de ingeniería que la componen, pueden realizar prácticas de forma remota. Es decir, desde cualquier PC con el software adecuado instalado y a través de Internet, sin requerir su presencia en un laboratorio físico. La característica más destacable e importante de este Laboratorio Virtual es que las medidas que se realizan no son simulaciones sobre circuitos virtuales, sino medidas reales sobre circuitos reales: el alumno puede configurar una serie de interconexiones entre componentes electrónicos, formando el circuito que necesite, que posteriormente el Laboratorio Virtual se encargará de realizar físicamente, gracias al hardware y al software que conforman el sistema. Tras ello, el alumno puede excitar el circuito con señales provenientes de instrumental real de laboratorio y obtener medidas de la misma forma, en los puntos del circuito que indique. La necesidad principal a la que este Proyecto de Fin de Carrera da solución es la sustitución de los instrumentos de sobremesa por instrumentos emulados en base a Tarjetas de Adquisición de Datos (DAQ). Los instrumentos emulados son: un multímetro, un generador de señales y un osciloscopio. Además, existen otros objetivos derivados de lo anterior, como es el que los instrumentos emulados deben guardar una total compatibilidad con el resto del sistema del Laboratorio Virtual, o que el diseño ha de ser escalable y adaptable. Todo ello se ha implementado mediante: un software escrito en LabVIEW, que utiliza un lenguaje de programación gráfico; un hardware que ha sido primero diseñado y luego fabricado, controlado por el software; y una Tarjeta de Adquisición de Datos, que gracias a la escalabilidad del sistema puede sustituirse por otro modelo superior o incluso por varias de ellas. ABSTRACT. This project is framed in the development line of the electronics Virtual Laboratory, developed at Escuela Universitaria de Ingeniería Técnica de Telecomunicación (EUITT), from Universidad Politécnica de Madrid (UPM). With the Virtual Laboratory, the university’s students, from any of its engineering schools that is composed of, can do practices remotely. Or in other words, from any PC with the correct software installed and through the Internet, without requiring his or her presence in a physical laboratory. The most remarkable and important characteristic this Virtual Laboratory has is that the measures the students does are not simulations over virtual circuits, but real measures over real circuits: the student can configure a series of interconnections between electronic parts, setting up the circuit he or she needs, and afterwards the Virtual Laboratory will realize that circuit physically, thanks to the hardware and software that compose the whole system. Then, the student can apply signals coming from real laboratory instruments and get measures in the same way, at the points of the circuit he or she points out. The main need this Degree Final Project gives solution is the substitution of the real instruments by emulated instruments, based on Data Acquisition systems (DAQ). The emulated instruments are: a digital multimeter, a signal generator and an oscilloscope. In addition, there is other objectives coming from the previously said, like the need of a total compatibility between the real instruments and the emulated ones and with the rest of the Virtual Laboratory, or that the design must be scalable and adaptive. All of that is implemented by: a software written in LabVIEW, which makes use of a graphical programming language; a hardware that was first designed and later manufactured, then controlled by software; and a Data Acquisition device, though thanks to the system’s scalability it can be substituted by a better model or even by several DAQs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this chapter, we are going to describe the main features as well as the basic steps of the Boundary Element Method (BEM) as applied to elastostatic problems and to compare them with other numerical procedures. As we shall show, it is easy to appreciate the adventages of the BEM, but it is also advisable to refrain from a possible unrestrained enthusiasm, as there are also limitations to its usefulness in certain types of problems. The number of these problems, nevertheless, is sufficient to justify the interest and activity that the new procedure has aroused among researchers all over the world. Briefly speaking, the most frequently used version of the BEM as applied to elastostatics works with the fundamental solution, i.e. the singular solution of the governing equations, as an influence function and tries to satisfy the boundary conditions of the problem with the aid of a discretization scheme which consists exclusively of boundary elements. As in other numerical methods, the BEM was developed thanks to the computational possibilities offered by modern computers on totally "classical" basis. That is, the theoretical grounds are based on linear elasticity theory, incorporated long ago into the curricula of most engineering schools. Its delay in gaining popularity is probably due to the enormous momentum with which Finite Element Method (FEM) penetrated the professional and academic media. Nevertheless, the fact that these methods were developed before the BEM has been beneficial because de BEM successfully uses those results and techniques studied in past decades. Some authors even consider the BEM as a particular case of the FEM while others view both methods as special cases of the general weighted residual technique. The first paper usually cited in connection with the BEM as applied to elastostatics is that of Rizzo, even though the works of Jaswon et al., Massonet and Oliveira were published at about the same time, the reason probably being the attractiveness of the "direct" approach over the "indirect" one. The work of Tizzo and the subssequent work of Cruse initiated a fruitful period with applicatons of the direct BEM to problems of elastostacs, elastodynamics, fracture, etc. The next key contribution was that of Lachat and Watson incorporating all the FEM discretization philosophy in what is sometimes called the "second BEM generation". This has no doubt, led directly to the current developments. Among the various researchers who worked on elastostatics by employing the direct BEM, one can additionallly mention Rizzo and Shippy, Cruse et al., Lachat and Watson, Alarcón et al., Brebbia el al, Howell and Doyle, Kuhn and Möhrmann and Patterson and Sheikh, and among those who used the indirect BEM, one can additionally mention Benjumea and Sikarskie, Butterfield, Banerjee et al., Niwa et al., and Altiero and Gavazza. An interesting version of the indirct method, called the Displacement Discontinuity Method (DDM) has been developed by Crounh. A comprehensive study on various special aspects of the elastostatic BEM has been done by Heisse, while review-type articles on the subject have been reported by Watson and Hartmann. At the present time, the method is well established and is being used for the solution of variety of problems in engineering mechanics. Numerous introductory and advanced books have been published as well as research-orientated ones. In this sense, it is worth noting the series of conferences promoted by Brebbia since 1978, wich have provoked a continuous research effort all over the world in relation to the BEM. In the following sections, we shall concentrate on developing the direct BEM as applied to elastostatics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La presente investigación, tiene como objetivo analizar las influencias que ejercen los recursos intangibles (Gestión del Conocimiento, Marca, Reputación Organizacional y Responsabilidad Social) en la gestión estratégica de las instituciones de educación superior (IES) y el impacto de los mismos en los procesos de innovación a través del valor añadido que se transfiere al entorno. Se considera importante realizar un estudio sobre este tema dado que son las IES las encargadas de proporcionar los conocimientos y los nuevos hallazgos en innovaciones tecnológicas, que son transferidas al tejido productivo de las regiones, lo que proporciona crecimiento económico y mejoras en la calidad de vida. El estudio se enmarca dentro de los postulados de la teoría de los recursos y las capacidades (TRC) y de los intangibles, los cuales sirven de base a la investigación. Se planteó un sistema de hipótesis subdividido en dos vías de influencias. La primera, donde se analizan las influencias directas que ejercen los recursos intangibles sobre los resultados de las IES. La otra vía es la indirecta, que estudia las influencias que ejercen los recursos intangibles gestionados estratégicamente sobre los resultados de las IES. Esta investigación se ha concebido como no experimental, de tipo exploratorio, basada en el paradigma que busca explicar un fenómeno (variable dependiente) a través del comportamiento de las variables independientes. Es un estudio transversal, cuantitativo, que intenta describir las causas del fenómeno. Con el objeto de determinar las influencias o relaciones de causalidad que subyacen entre las variables, se utilizó la técnica del modelo de ecuaciones estructurales (SEM). La población objeto de estudio estuvo constituida por los 857 individuos pertenecientes a los consejos directivos de las IES, que forman parte de las base de datos que gestiona el Consorcio de Escuelas de Ingeniería de Latinoamérica y del Caribe y la Universidad Politécnica de Madrid, con un tamaño de muestra significativa de 250 directivos, lo que representa el 29,42% de la población. Como fuentes de recolección de información se utilizaron fuentes primarias y secundarias. Para recabar la información primaria se diseñó un cuestionario (ad hoc), el cual fue validado por expertos. La información de fuentes secundarias se extrajo de la bases de datos de la Red Iberoamericana de Ciencia y Tecnología (RICYT). Los resultados obtenidos indican que las influencias directas que pueden ejercer los recursos intangibles (Gestión del Conocimiento, Marca, Reputación Organizacional y Responsabilidad Social) no son significativas, por ello se rechazaron todas las hipótesis de la vía de influencia directa. Asimismo, de acuerdo con el contraste realizado al submodelo que representa la vía de influencia indirecta, resultaron significativas las influencias que ejercen los intangibles Gestión del Conocimiento y Reputación Organizacional, gestionadas estratégicamente sobre los resultados con valor añadido generado por las IES y transferidos al entorno. Sin embargo, no se apoyan todas las hipótesis del modelo, debido a que los constructos Marca y Responsabilidad Social resultaron no significativos. Las teorías sobre intangibles enmarcadas en la TRC no son del todo robustas y requieren de mayores esfuerzos por parte de los investigadores para lograr definir los constructos a utilizar. De igual forma, se sigue corroborando el desfase que existe entre las teorías que sustentan la investigación y las comprobaciones empíricas de las mismas. Además, se evidencia que las IES enfocan su actuación hacia la academia, por encima de las otras funciones, otorgando a la enseñanza e investigación y a la reputación organizacional una mayor importancia. Sin embargo, debido a su naturaleza no empresarial, las IES siguen manteniendo una filosofía de gestión enfocada a la generación y transmisión de conocimientos que crean reputación. Se excluyen los intangibles Marca y Responsabilidad Social, por considerar que no aportan valor a sus procesos internos o que están inmersos dentro de otros recursos intangibles. En conclusión, se corrobora el atraso de la gestión estratégica que presentan las IES en Latinoamérica. Se comprueba la no aplicación de postulados básicos de la gerencia moderna que contribuyan al manejo eficiente de todos sus recursos y al logro de sus objetivos. Esto deriva en la necesidad de modernizar la visión estratégica de las IES y en crear mejores mecanismos para lograr reconocer, mantener, proteger y desarrollar los Recursos Intangibles que poseen, realizando combinaciones de recursos óptimas, que maximicen la creación de valor para sí mismas y para la sociedad a la que pertenecen. ABSTRACT This research aims to analyze the influences exerted by intangible resources (Knowledge Management, Brand, Organizational Reputation and Social Responsibility) in the strategic management of higher education institutions (HEIs) and their impact in the innovation processes through the added value that is transferred to the environment. It is considered important to conduct a study on this issue since HEIs are responsible for providing knowledge and new findings on technological innovations, which are then, transferred to the productive fabric of these regions, providing economic growth and improvements in quality of life. The study is framed within the tenets of the Theory of Resources and Capabilities (TRC) and of intangibles which underlie this research. A system of hypotheses was raised which was subdivided into two pathways of influences. In the first system the direct influences exerted by intangible resources on the results of the IES are analyzed. The other system focuses on the indirect influences exerted by the strategically managed intangible resources on the HEIs results. This research is designed as experimental, exploratory and based on the paradigm that seeks to explain a phenomenon (the dependent variable) through the behavior of the independent variables. It is a crosssectional, quantitative study, which attempts to describe the causes of the phenomenon. In order to determine the influences or causal relationships among variables the structural equation modeling technique (SEM) was used. The population under study consisted of 857 individuals from the boards of HEIs, which are part of the database managed by the Consortium of Engineering Schools in Latin America and the Caribbean and the Technical University of Madrid, with a significant sample size of 250 managers which represents 29.42% of the population. As sources of information gathering primary and secondary sources were used. To collect primary information an ad-hoc questionnaire which was validated by experts was designed. The secondary information was extracted from the database of the Latin American Network of Science and Technology (RICYT). The results obtained indicate that the direct influences that intangible resources (Knowledge Management, Brand, Organizational Reputation and Social Responsibility) can exert are not significant. Therefore, all hypotheses related to direct influence were rejected. Also, according to the test made with the system which represents the indirect channel of influence, significant influences were exerted on the results with added value generated by the HEIs by the intangibles Knowledge Management and Organizational Reputation when they were managed strategically. However, all model hypotheses are not supported, because the constructs Brand and Social Responsibility were not significant. Theories of intangibles within the framework of the Theory of Resources and Capabilities are not entirely robust and require greater efforts by researchers to define the constructs to be used. Similarly the existing gap between the theories underpinning research and the empirical tests continues to be corroborated. In addition, there is evidence that HEIs focus their action on the academy neglecting the other functions, giving more importance to teaching, research and organizational reputation. However, due to their non-business nature, HEIs still maintain a management philosophy focused on the generation and transmission of knowledge which leads to reputation. The intangibles Brand and Social Responsibility are excluded, considering that they do not add value to their internal processes or are embedded within other intangible resources. In conclusion, the backwardness of HEIs’ strategic management in Latin America is confirmed. The lack of application of the basic principles of modern management that contribute to the efficient administration of all the resources and the achievement of objectives is proven. This leads to the need to modernize the strategic vision of HEIs and the need for better mechanisms to recognize, maintain, protect and develop the intangible resources they possess, achieving optimal combinations of resources in order to maximize the creation of value for them and for the society to which they belong.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The engineering careers models were diverse in Europe, and are adopting now in Spain the Bolonia process for European Universities. Separated from older Universities, that are in part technically active, Civil Engineering (Caminos, Canales y Puertos) started at end of 18th century in Spain adopting the French models of Upper Schools for state civil servants with exam at entry. After 1800 intense wars, to conserve forest regions Ingenieros de Montes appeared as Upper School, and in 1855 also the Ingenieros Agrónomos to push up related techniques and practices. Other Engineers appeared as Upper Schools but more towards private factories. These ES got all adapted Lower Schools of Ingeniero Tecnico. Recently both grew much in number and evolved, linked also to recognized Professions. Spanish society, into European Community, evolved across year 2000, in part highly well, but with severe discordances, that caused severe youth unemployment with 2008-2011 crisis. With Bolonia process high formal changes step in from 2010-11, accepted with intense adaptation. The Lower Schools are changing towards the Upper Schools, and both that have shifted since 2010-11 various 4-years careers (Grado), some included into the precedent Professions, and diverse Masters. Acceptation of them to get students has started relatively well, and will evolve, and acceptation of new grades for employment in Spain, Europe or outside will be essential. Each Grado has now quite rigid curricula and programs, MOODLE was introduced to connect pupils, some specific uses of Personal Computers are taught in each subject. Escuela de Agronomos centre, reorganized with its old name in its precedent buildings at entrance of Campus Moncloa, offers Grados of Agronomic Engineering and Science for various public and private activities for agriculture, Alimentary Engineering for alimentary activities and control, Agro-Environmental Engineering more related to environment activities, and in part Biotechnology also in laboratories in Campus Monte-Gancedo for Biotechnology of Plants and Computational Biotechnology. Curricula include Basics, Engineering, Practices, Visits, English, ?project of end of career?, Stays. Some masters will conduce to specific professional diploma, list includes now Agro-Engineering, Agro-Forestal Biotechnology, Agro and Natural Resources Economy, Complex Physical Systems, Gardening and Landscaping, Rural Genie, Phytogenetic Resources, Plant Genetic Resources, Environmental Technology for Sustainable Agriculture, Technology for Human Development and Cooperation.