52 resultados para Energy consumption.

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the energy consumption and subsequent CO2 emissions of road highway transportation under three toll systems in Spain for four categories of vehicles: cars, vans, buses and articulated trucks. The influence of toll systems is tested for a section of AP-41 highway between Toledo and Madrid. One system is free flow, other is traditional stop and go and the last toll system operates with an electronic toll collection (ETC) technology. Energy consumption and CO2 emissions were found to be closely related to vehicle mass, wind exposure, engine efficiency and acceleration rate. These parameters affect, directly or indirectly, the external forces which determine the energy consumption. Reducing the magnitude of these forces through an appropriate toll management is an important way of improving the energy performance of vehicles. The type of toll system used can have a major influence on the energy efficiency of highway transportation and therefore it is necessary to consider free flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ICTs account nowadays for 2% of total carbon emissions. However, in a time when strict measures to reduce energyconsumption in all the industrial and services sectors are required, the ICT sector faces an increase in services and bandwidth demand. The deployment of NextGenerationNetworks (NGN) will be the answer to this new demand and specifically, the NextGenerationAccessNetworks (NGANs) will provide higher bandwidth access to users. Several policy and cost analysis are being carried out to understand the risks and opportunities of new deployments, though the question of which is the role of energyconsumption in NGANs seems off the table. Thus, this paper proposes amodel to analyze the energyconsumption of the main fiber-based NGAN architectures, i.e. Fiber To The House (FTTH) in both Passive Optical Network (PON) and Point-to-Point (PtP) variations, and FTTx/VDSL. The aim of this analysis is to provide deeper insight on the impact of new deployments on the energyconsumption of the ICT sector and the effects of energyconsumption on the life-cycle cost of NGANs. The paper presents also an energyconsumption comparison of the presented architectures, particularized in the specific geographic and demographic distribution of users of Spain, but easily extendable to other countries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides some results on the potential to minimize environmental impacts in residential buildings life cycle, through façade design strategies, analyzing also their impact on costs from a lifecycle perspective. On one hand, it assesses the environmental damage produced by the materials of the building envelope, and on the other, the benefits they offer in terms of habitability and liveability in the use phase. The analysis includes several design parameters used both for rehabilitation of existing facades, as for new facades, trying to cover various determinants and proposing project alternatives. With this study we intended to contribute to address the energy challenges for the coming years, trying also to propose pathways for innovative solutions for the building envelope.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentación realizada en el PhD Seminar del ITS 2011 en Budapest. ICTs (Information and Communication Technologies) currently account for 2% of total carbon emissions. However, although modern standards require strict measures to reduce energy consumption across all industrial and services sectors, the ICT sector also faces an increase in services and bandwidth demand. The deployment of Next Generation Networks (NGN) will be the answer to this new demand; more specifically, Next Generation Access Networks (NGANs) will provide higher bandwidth access to users. Several policy and cost analyses are being carried out to understand the risks and opportunities of new deployments, but the question of what role energy consumption plays in NGANs seems off the table. Thus, this paper proposes a model to analyse the energy consumption of the main fibre-based NGAN architectures: Fibre To The House (FTTH), in both Passive Optical Network (PON) and Point-to-Point (PtP) variations, and FTTx/VDSL. The aim of this analysis is to provide deeper insight on the impact of new deployments on the energy consumption of the ICT sector and the effects of energy consumption on the life-cycle cost of NGANs. The paper also presents an energy consumption comparison of the presented architectures, particularised to the specific geographic and demographic distribution of users of Spain but easily extendable to other countries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reducing energy consumption is one of the main goals of sustainability planning in most countries. For instance in Europe, the EC established the objectives in the Communication “20 20 by 2020 Europe's climate change opportunity”.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reducing energy consumption is one of the main challenges in most countries. For example, European Member States agreed to reduce greenhouse gas (GHG) emissions by 20% in 2020 compared to 1990 levels (EC 2008). Considering each sector separately, ICTs account nowadays for 2% of total carbon emissions. This percentage will increase as the demand of communication services and applications steps up. At the same time, the expected evolution of ICT-based developments - smart buildings, smart grids and smart transportation systems among others - could result in the creation of energy-saving opportunities leading to global emission reductions (Labouze et al. 2008), although the amount of these savings is under debate (Falch 2010). The main development required in telecommunication networks ?one of the three major blocks of energy consumption in ICTs together with data centers and consumer equipment (Sutherland 2009) ? is the evolution of existing infrastructures into ultra-broadband networks, the so-called Next Generation Networks (NGN). Fourth generation (4G) mobile communications are the technology of choice to complete -or supplement- the ubiquitous deployment of NGN. The risk and opportunities involved in NGN roll-out are currently in the forefront of the economic and policy debate. However, the issue of which is the role of energy consumption in 4G networks seems absent, despite the fact that the economic impact of energy consumption arises as a key element in the cost analysis of this type of networks. Precisely, the aim of this research is to provide deeper insight on the energy consumption involved in the usage of a 4G network, its relationship with network main design features, and the general economic impact this would have in the capital and operational expenditures related with network deployment and usage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reducing energy consumption is one of the main goals of sustainability planning in most countries. For instance in Europe, the EC established the objectives in the Communication “20 20 by 2020 Europe's climate change opportunity”. • Next Generation Networks (NGN)  One of the most relevant upcoming ICT development • The role of energy consumption seems mostly absent from the main analysis and the debate on NGN deployment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By analysing the dynamic principles of the human gait, an economic gait‐control analysis is performed, and passive elements are included to increase the energy efficiency in the motion control of active orthoses. Traditional orthoses use position patterns from the clinical gait analyses (CGAs) of healthy people, which are then de‐normalized and adjusted to each user. These orthoses maintain a very rigid gait, and their energy cosT is very high, reducing the autonomy of the user. First, to take advantage of the inherent dynamics of the legs, a state machine pattern with different gains in eachstate is applied to reduce the actuator energy consumption. Next, different passive elements, such as springs and brakes in the joints, are analysed to further reduce energy consumption. After an off‐line parameter optimization and a heuristic improvement with genetic algorithms, a reduction in energy consumption of 16.8% is obtained by applying a state machine control pattern, and a reduction of 18.9% is obtained by using passive elements. Finally, by combining both strategies, a more natural gait is obtained, and energy consumption is reduced by 24.6%compared with a pure CGA pattern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La contribución del sector de las tecnologías de la información y las comunicaciones (TICs) al consumo de energía a nivel global se ha visto incrementada considerablemente en la última década al mismo tiempo que su relevancia dentro de la economía global. Se prevé que esta tendencia continúe debido al uso cada vez más intensivo de estas tecnologías. Una de las principales causas es el tráfico de datos de banda ancha generado por el uso de las redes de telecomunicaciones. De hecho como respuesta a esta demanda de recursos por parte de los usuarios, de la industria de las telecomunicaciones está iniciando el despliegue de las redes de nueva generación. En cualquier caso, el consumo de energía es un factor generalmente ausente del debate sobre el despliegue de estas tecnologías, a pesar de la posible repercusión que pueda llegar a tener en los costes y la sostenibilidad de estos proyectos. A lo largo de este trabajo se desarrollan modelos para evaluar el consumo energético de las redes de acceso de nueva generación (NGAN). Estos servirán tanto para llevar a cabo cálculos en un escenario global estático, como en cualquiera otro que determine la potencial evolución de la red de acceso a lo largo de su despliegue. Estos modelos combinan tres factores: la penetración prospectiva de cada una de las tecnologías de banda ancha analizadas, el tráfico generado por usuario y su futura evolución, y el perfil de consumo de energía de cada uno de los dispositivos de red desplegados. Tras evaluar los resultados derivados de la aplicación de los modelos en el caso demográfico específico de España, se obtienen conclusiones acerca de las diferencias tecnológicas en cuanto al consumo energético, sus implicaciones económicas, y la sensibilidad de los cálculos atendiendo a posibles modificaciones en los valores de referencia de diferentes parámetros de diseño. Se destaca por tanto el efecto en el consumo energético de los desarrollos tecnológicos, tecno-económicos, y de las decisiones en el ámbito regulatorio. Aunque como se ha dicho, se ha ejemplificado el cálculo para un caso particular, tanto los modelos como las conclusiones extraídas se pueden extrapolar a otros países similares.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first level data cache un modern processors has become a major consumer of energy due to its increasing size and high frequency access rate. In order to reduce this high energy con sumption, we propose in this paper a straightforward filtering technique based on a highly accurate forwarding predictor. Specifically, a simple structure predicts whether a load instruction will obtain its corresponding data via forwarding from the load-store structure -thus avoiding the data cache access - or if it will be provided by the data cache. This mechanism manages to reduce the data cache energy consumption by an average of 21.5% with a negligible performance penalty of less than 0.1%. Furthermore, in this paper we focus on the cache static energy consumption too by disabling a portin of sets of the L2 associative cache. Overall, when merging both proposals, the combined L1 and L2 total energy consumption is reduced by an average of 29.2% with a performance penalty of just 0.25%. Keywords: Energy consumption; filtering; forwarding predictor; cache hierarchy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We estimate the energy consumption of toll highway transport on a number of Spanish roads. Regression parameters are balanced according to coefficients from an empirical analysis based on survey data by vehicle type. The mean energy consumption and subsequent CO2 emissions on the toll highway sections are estimated as 1895 MJ/h/lane-km and 0.15 tCO2 eq./h/lane-km, values that increase to 2644 and 0.22 when energy and carbon emissions of transport infrastructure are considered based on the life cycle energy consumption for toll highway construction and use. If the energy intensity of infrastructure construction is allocated to the users according to traffic, it is much higher for motorcycles than for cars, and is significantly lower for articulated trucks than for vans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article provides a new methodology for estimating fuel consumption and emissions by enabling a correct comparison between freight transportation modes. The approach is developed and integrated as a part of an intelligent transportation system dealing with goods movement. A key issue is related to energy consumption ratios and consequent CO2 emissions. Energy consumption ratios are often used based on transport demand. However, including other ratios based on transport supply can be useful. Furthermore, it is important to indicate which factors are associated with variations in energy consumption and emissions; especially of interest are parameters that have a higher incidence and order of magnitude, in order to fairly compare and understand the difference between transport modes and sub-modes. The study finds that the use of an energy consumption equation can improve the quality of the estimates. The study proposes that coefficients that define the energy consumption equation should be tested to determine market niches and sources of improvement in energy consumption according to the category of vehicles, fuel types used, and classes of products transported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper shows how the methodologies used in current practice might lead to an underestimation of energy consumption by different passenger transport modes, and also offers recommendations for improvements to these methodologies. The first recommendation is related to energy consumption rates. The studies reviewed use traditional energy consumption rates based on transportation demand, such as kilowatts-hour per vehicle-kilometre or kilowatts-hour per passenger-kilometre, and include other rates based on transportation supply which might prove useful. Second, energy consumption rates are dependent on factors, and the introduction of homogeneous units which are independent of these factors therefore offers a significant improvement when comparing transport modes. Third, the use of a vehicle energy consumption equation will improve the quality of the assessments. Fourth, we propose that the coefficients which define the energy consumption equation should be broken down to determine market niches and sources for improvements in energy consumption in the vehicle categories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contribution to global energy consumption of the information and communications technology (ICT) sector has increased considerably in the last decade, along with its growing relevance to the overall economy. This trend will continue due to the seemingly ever greater use of these technologies, with broadband data traffic generated by the usage of telecommunication networks as a primary component. In fact, in response to user demand, the telecommunications industry is initiating the deployment of next generation networks (NGNs). However, energy consumption is mostly absent from the debate on these deployments, in spite of the potential impact on both expenses and sustainability. In addition, consumers are unaware of the energy impact of their choices in ultra-broadband services. This paper focuses on forecasting energy consumption in the access part of NGNs by modelling the combined effect of the deployment of two different ultra-broadband technologies (FTTH-GPON and LTE), the evolution of traffic per user, and the energy consumption in each of the networks and user devices. Conclusions are presented on the levels of energy consumption, their cost and the impact of different network design parameters. The effect of technological developments, techno-economic and policy decisions on energy consumption is highlighted. On the consumer side, practical figures and comparisons across technologies are provided. Although the paper focuses on Spain, the analysis can be extended to similar countries.