4 resultados para Emission Spectra

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents a comprehensive optical characterization of Zn1−xMgxO thin films grown by spray pyrolysis (SP). Absorption measurements show the high potential of this technique to tune the bandgap from 3.30 to 4.11 eV by changing the Mg acetate content in the precursor solution, leading to a change of the Mg-content ranging from 0 up to 35%, as measured by transmission electron microscopy-energy dispersive x-ray spectroscopy. The optical emission of the films obtained by cathodoluminescence and photoluminescence spectroscopy shows a blue shift of the peak position from 3.26 to 3.89 eV with increasing Mg incorporation, with a clear excitonic contribution even at high Mg contents. The linewidth broadening of the absorption and emission spectra as well as the magnitude of the observed Stokes shift are found to significantly increase with the Mg content. This is shown to be related to both potential fluctuations induced by pure statistical alloy disorder and the presence of a tail of band states, the latter dominating for medium Mg contents. Finally, metal–semiconductor–metal photodiodes were fabricated showing a high sensitivity and a blue shift in the cut-off energy from 3.32 to 4.02 eV, i.e., down to 308 nm. The photodiodes present large UV/dark contrast ratios (102 − 107), indicating the viability of SP as a growth technique to fabricate low cost (Zn, Mg)O-based UV photodetectors reaching short wavelengths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen 1s excitation and ionization processes in the CO2 molecule have been studied with dispersed and non-dispersed fluorescence spectroscopy as well as with the vacuum ultraviolet (VUV) photon?photoion coincidence technique. The intensity of the neutral O emission line at 845 nm shows particular sensitivity to core-to-Rydberg excitations and core?valence double excitations, while shape resonances are suppressed. In contrast, the partial fluorescence yield in the wavelength window 300?650 nm and the excitation functions of selected O+ and C+ emission lines in the wavelength range 400?500 nm display all of the absorption features. The relative intensity of ionic emission in the visible range increases towards higher photon energies, which is attributed to O 1s shake-off photoionization. VUV photon?photoion coincidence spectra reveal major contributions from the C+ and O+ ions and a minor contribution from C2+. No conclusive changes in the intensity ratios among the different ions are observed above the O 1s threshold. The line shape of the VUV?O+ coincidence peak in the mass spectrum carries some information on the initial core excitation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to test the present status of Evaluated Nuclear Decay and Fission Yield Data Libraries to predict decay heat and delayed neutron emission rate, average neutron energy and neutron delayed spectra after a neutron fission pulse. Calculations are performed with JEFF-3.1.1 and ENDF/B-VII.1, and these are compared with experimental values. An uncertainty propagation assessment of the current nuclear data uncertainties is performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrated master-oscillator power amplifiers driven under steady-state injection conditions are known to show a complex dynamics resulting in a variety of emission regimes. We present experimental results on the emission characteristics of a 1.5 µm distributed feedback tapered master-oscillator power-amplifier in a wide range of steady-state injection conditions, showing different dynamic behaviors. The study combines the optical and radio-frequency spectra recorded under different levels of injected current into the master oscillator and the power amplifier sections. Under low injection current of the master oscillator the correlation between the optical and radio-frequency spectral maps allows to identify operation regimes in which the device emission arises from either the master oscillator mode or from the compound cavity modes allowed by the residual reflectance of the amplifier front facet. The quasi-periodic occurrence of these emission regimes as a function of the amplifier current is interpreted in terms of a thermally tuned competition between the modes of the master oscillator and the compound cavity modes. Under high injection current of the masteroscillator, two different regimes alternate quasi-periodically as a function of the injected current in the power amplifier: a stable regime with a single mode emission at the master oscillator frequency, and an unstable and complex self-pulsating regime showing strong peaks in the radio-frequency spectra as well as multiple frequencies in the optical spectra.