4 resultados para Electron diffraction

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study deals with a characterization of metakaolin pozzolanic activity and its chemical character exhibited in the Ordinary Portland Cement (OPC) blends by means of Transmission Electron Microscopy (TEM) and Selected-Area Electron Diffraction (SAED) techniques principally. Metakaolin sample was prepared by calcination of kaolin rock (Guadalajara, Spain) at 780°C. Two OPC of different chemical composition from the tricalcium aluminate content point of view were chosen and Portland cement blends series elaborated and then submitted to the pozzolanic activity test (EN 196-5 or Frattini test). The main mineralogical components of the metakaolin are determined qualitatively: χ-alumina and quartz. The chemical character of the metakaolin is described because of its final composition as well as due to its Al atoms possible coordination. The crystalline order of the material is found to be of both amorphous and polycrystalline, being an intimate amorphous mixture of alumina and silica. Finally, all the alumina capable of reacting chemically is denominated and classified as reactive alumina component, Al2O3r−, of pozzolans, as well as the aluminic chemical character of metakaolin in OPC blends is once again proved and exhibited by means of Friedel's salt formation studied already at 4 h-age.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By using the spray pyrolysis methodology in its classical configuration we have grown self-assembled MgxZn1−xO quantum dots (size [similar]4–6 nm) in the overall range of compositions 0 ≤ x ≤ 1 on c-sapphire, Si (100) and quartz substrates. Composition of the quantum dots was determined by means of transmission electron microscopy-energy dispersive X-ray analysis (TEM-EDAX) and X-ray photoelectron spectroscopy. Selected area electron diffraction reveals the growth of single phase hexagonal MgxZn1−xO quantum dots with composition 0 ≤ x ≤ 0.32 by using a nominal concentration of Mg in the range 0 to 45%. Onset of Mg concentration about 50% (nominal) forces the hexagonal lattice to undergo a phase transition from hexagonal to a cubic structure which resulted in the growth of hexagonal and cubic phases of MgxZn1−xO in the intermediate range of Mg concentrations 50 to 85% (0.39 ≤ x ≤ 0.77), whereas higher nominal concentration of Mg ≥ 90% (0.81 ≤ x ≤ 1) leads to the growth of single phase cubic MgxZn1−xO quantum dots. High resolution transmission electron microscopy and fast Fourier transform confirm the results and show clearly distinguishable hexagonal and cubic crystal structures of the respective quantum dots. A difference of 0.24 eV was detected between the core levels (Zn 2p and Mg 1s) measured in quantum dots with hexagonal and cubic structures by X-ray photoemission. The shift of these core levels can be explained in the frame of the different coordination of cations in the hexagonal and cubic configurations. Finally, the optical absorption measurements performed on single phase hexagonal MgxZn1−xO QDs exhibited a clear shift in optical energy gap on increasing the Mg concentration from 0 to 40%, which is explained as an effect of substitution of Zn2+ by Mg2+ in the ZnO lattice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

GaInP nucleation on Ge(100) often starts by annealing of the Ge(100) substrates under supply of phosphorus precursors. However, the influence on the Ge surface is not well understood. Here, we studied vicinal Ge(100) surfaces annealed under tertiarybutylphosphine (TBP) supply in MOVPE by in situ reflection anisotropy spectroscopy (RAS), X-ray photoelectron spectroscopy (XPS), and low energy electron diffraction (LEED). While XPS reveals a P termination and the presence of carbon on the Ge surface, LEED patterns indicate a disordered surface probably due to by-products of the TBP pyrolysis. However, the TBP annealed Ge(100) surface exhibits a characteristic RA spectrum, which is related to the P termination. RAS allows us to in situ control phosphorus desorption dependent on temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the preparation of single domain Ge(100):As surfaces in a metal-organic vapor phase epitaxy reactor. In situ reflection anisotropy spectra (RAS) of vicinal substrates change when arsenic is supplied either by tertiarybutylarsine or by background As4 during annealing. Low energy electron diffraction shows mutually perpendicular orientations of dimers, scanning tunneling microscopy reveals distinct differences in the step structure, and x-ray photoelectron spectroscopy confirms differences in the As coverage of the Ge(100): As samples. Their RAS signals consist of contributions related to As dimer orientation and to step structure, enabling precise in situ control over preparation of single domain Ge(100): As surfaces.