8 resultados para Electricity use

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Data centers are easily found in every sector of the worldwide economy. They are composed of thousands of servers, serving millions of users globally and 24-7. In the last years, e-Science applications such e-Health or Smart Cities have experienced a significant development. The need to deal efficiently with the computational needs of next-generation applications together with the increasing demand for higher resources in traditional applications has facilitated the rapid proliferation and growing of Data Centers. A drawback to this capacity growth has been the rapid increase of the energy consumption of these facilities. In 2010, data center electricity represented 1.3% of all the electricity use in the world. In year 2012 alone, global data center power demand grep 63% to 38GW. A further rise of 17% to 43GW was estimated in 2013. Moreover, Data Centers are responsible for more than 2% of total carbon dioxide emissions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los Centros de Datos se encuentran actualmente en cualquier sector de la economía mundial. Están compuestos por miles de servidores, dando servicio a los usuarios de forma global, las 24 horas del día y los 365 días del año. Durante los últimos años, las aplicaciones del ámbito de la e-Ciencia, como la e-Salud o las Ciudades Inteligentes han experimentado un desarrollo muy significativo. La necesidad de manejar de forma eficiente las necesidades de cómputo de aplicaciones de nueva generación, junto con la creciente demanda de recursos en aplicaciones tradicionales, han facilitado el rápido crecimiento y la proliferación de los Centros de Datos. El principal inconveniente de este aumento de capacidad ha sido el rápido y dramático incremento del consumo energético de estas infraestructuras. En 2010, la factura eléctrica de los Centros de Datos representaba el 1.3% del consumo eléctrico mundial. Sólo en el año 2012, el consumo de potencia de los Centros de Datos creció un 63%, alcanzando los 38GW. En 2013 se estimó un crecimiento de otro 17%, hasta llegar a los 43GW. Además, los Centros de Datos son responsables de más del 2% del total de emisiones de dióxido de carbono a la atmósfera. Esta tesis doctoral se enfrenta al problema energético proponiendo técnicas proactivas y reactivas conscientes de la temperatura y de la energía, que contribuyen a tener Centros de Datos más eficientes. Este trabajo desarrolla modelos de energía y utiliza el conocimiento sobre la demanda energética de la carga de trabajo a ejecutar y de los recursos de computación y refrigeración del Centro de Datos para optimizar el consumo. Además, los Centros de Datos son considerados como un elemento crucial dentro del marco de la aplicación ejecutada, optimizando no sólo el consumo del Centro de Datos sino el consumo energético global de la aplicación. Los principales componentes del consumo en los Centros de Datos son la potencia de computación utilizada por los equipos de IT, y la refrigeración necesaria para mantener los servidores dentro de un rango de temperatura de trabajo que asegure su correcto funcionamiento. Debido a la relación cúbica entre la velocidad de los ventiladores y el consumo de los mismos, las soluciones basadas en el sobre-aprovisionamiento de aire frío al servidor generalmente tienen como resultado ineficiencias energéticas. Por otro lado, temperaturas más elevadas en el procesador llevan a un consumo de fugas mayor, debido a la relación exponencial del consumo de fugas con la temperatura. Además, las características de la carga de trabajo y las políticas de asignación de recursos tienen un impacto importante en los balances entre corriente de fugas y consumo de refrigeración. La primera gran contribución de este trabajo es el desarrollo de modelos de potencia y temperatura que permiten describes estos balances entre corriente de fugas y refrigeración; así como la propuesta de estrategias para minimizar el consumo del servidor por medio de la asignación conjunta de refrigeración y carga desde una perspectiva multivariable. Cuando escalamos a nivel del Centro de Datos, observamos un comportamiento similar en términos del balance entre corrientes de fugas y refrigeración. Conforme aumenta la temperatura de la sala, mejora la eficiencia de la refrigeración. Sin embargo, este incremente de la temperatura de sala provoca un aumento en la temperatura de la CPU y, por tanto, también del consumo de fugas. Además, la dinámica de la sala tiene un comportamiento muy desigual, no equilibrado, debido a la asignación de carga y a la heterogeneidad en el equipamiento de IT. La segunda contribución de esta tesis es la propuesta de técnicas de asigación conscientes de la temperatura y heterogeneidad que permiten optimizar conjuntamente la asignación de tareas y refrigeración a los servidores. Estas estrategias necesitan estar respaldadas por modelos flexibles, que puedan trabajar en tiempo real, para describir el sistema desde un nivel de abstracción alto. Dentro del ámbito de las aplicaciones de nueva generación, las decisiones tomadas en el nivel de aplicación pueden tener un impacto dramático en el consumo energético de niveles de abstracción menores, como por ejemplo, en el Centro de Datos. Es importante considerar las relaciones entre todos los agentes computacionales implicados en el problema, de forma que puedan cooperar para conseguir el objetivo común de reducir el coste energético global del sistema. La tercera contribución de esta tesis es el desarrollo de optimizaciones energéticas para la aplicación global por medio de la evaluación de los costes de ejecutar parte del procesado necesario en otros niveles de abstracción, que van desde los nodos hasta el Centro de Datos, por medio de técnicas de balanceo de carga. Como resumen, el trabajo presentado en esta tesis lleva a cabo contribuciones en el modelado y optimización consciente del consumo por fugas y la refrigeración de servidores; el modelado de los Centros de Datos y el desarrollo de políticas de asignación conscientes de la heterogeneidad; y desarrolla mecanismos para la optimización energética de aplicaciones de nueva generación desde varios niveles de abstracción. ABSTRACT Data centers are easily found in every sector of the worldwide economy. They consist of tens of thousands of servers, serving millions of users globally and 24-7. In the last years, e-Science applications such e-Health or Smart Cities have experienced a significant development. The need to deal efficiently with the computational needs of next-generation applications together with the increasing demand for higher resources in traditional applications has facilitated the rapid proliferation and growing of data centers. A drawback to this capacity growth has been the rapid increase of the energy consumption of these facilities. In 2010, data center electricity represented 1.3% of all the electricity use in the world. In year 2012 alone, global data center power demand grew 63% to 38GW. A further rise of 17% to 43GW was estimated in 2013. Moreover, data centers are responsible for more than 2% of total carbon dioxide emissions. This PhD Thesis addresses the energy challenge by proposing proactive and reactive thermal and energy-aware optimization techniques that contribute to place data centers on a more scalable curve. This work develops energy models and uses the knowledge about the energy demand of the workload to be executed and the computational and cooling resources available at data center to optimize energy consumption. Moreover, data centers are considered as a crucial element within their application framework, optimizing not only the energy consumption of the facility, but the global energy consumption of the application. The main contributors to the energy consumption in a data center are the computing power drawn by IT equipment and the cooling power needed to keep the servers within a certain temperature range that ensures safe operation. Because of the cubic relation of fan power with fan speed, solutions based on over-provisioning cold air into the server usually lead to inefficiencies. On the other hand, higher chip temperatures lead to higher leakage power because of the exponential dependence of leakage on temperature. Moreover, workload characteristics as well as allocation policies also have an important impact on the leakage-cooling tradeoffs. The first key contribution of this work is the development of power and temperature models that accurately describe the leakage-cooling tradeoffs at the server level, and the proposal of strategies to minimize server energy via joint cooling and workload management from a multivariate perspective. When scaling to the data center level, a similar behavior in terms of leakage-temperature tradeoffs can be observed. As room temperature raises, the efficiency of data room cooling units improves. However, as we increase room temperature, CPU temperature raises and so does leakage power. Moreover, the thermal dynamics of a data room exhibit unbalanced patterns due to both the workload allocation and the heterogeneity of computing equipment. The second main contribution is the proposal of thermal- and heterogeneity-aware workload management techniques that jointly optimize the allocation of computation and cooling to servers. These strategies need to be backed up by flexible room level models, able to work on runtime, that describe the system from a high level perspective. Within the framework of next-generation applications, decisions taken at this scope can have a dramatical impact on the energy consumption of lower abstraction levels, i.e. the data center facility. It is important to consider the relationships between all the computational agents involved in the problem, so that they can cooperate to achieve the common goal of reducing energy in the overall system. The third main contribution is the energy optimization of the overall application by evaluating the energy costs of performing part of the processing in any of the different abstraction layers, from the node to the data center, via workload management and off-loading techniques. In summary, the work presented in this PhD Thesis, makes contributions on leakage and cooling aware server modeling and optimization, data center thermal modeling and heterogeneityaware data center resource allocation, and develops mechanisms for the energy optimization for next-generation applications from a multi-layer perspective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of photovoltaic experimental plants in engineering educational buildings contributes to an increase in acceptance of this technology by future engineers. There are some photovoltaic (PV) systems in educational buildings in Spain, but they are usually limited to buildings in relation to electrical technologies or research areas. They are not common in other educational or official buildings. This paper presents the project of a grid-connected solar plant with two main objectives. First, different PV module technologies will be compared. Second, an emphasis on agronomical areas in educational settings will be reviewed in an attempt to facilitate student engagement in the use of the power plant. The system is grid-connected in order to pay-back the investment in the plant. In fact the electricity generated by the plant will be used by the installations of the building, as it is the closest consumer. This work intends to approximate photovoltaic technology to university degrees not directly related with it and at the same time research in comparison of systems with different technologies. This is a good example of an solar plant for both optimum production and educational purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La informática se está convirtiendo en la quinta utilidad (gas, agua, luz, teléfono) en parte debido al impacto de Cloud Computing en las mayorías de las organizaciones. Este uso de informática es usada por cada vez más tipos de sistemas, incluidos Sistemas Críticos. Esto tiene un impacto en la complejidad internad y la fiabilidad de los sistemas de la organización y los que se ofrecen a los clientes. Este trabajo investiga el uso de Cloud Computing por sistemas críticos, centrándose en las dependencias y especialmente en la fiabilidad de estos sistemas. Se han presentado algunos ejemplos de su uso, y aunque su utilización en sistemas críticos no está extendido, se presenta cual puede llegar a ser su impacto. El objetivo de este trabajo es primero definir un modelo que pueda representar de una forma cuantitativa las interdependencias en fiabilidad y interdependencia para las organizaciones que utilicen estos sistemas, y aplicar este modelo en un sistema crítico del campo de sanidad y mostrar sus resultados. Los conceptos de “macro-dependability” y “micro-dependability” son introducidos en el modelo para la definición de interdependencia y para analizar la fiabilidad de sistemas que dependen de otros sistemas. ABSTRACT With the increasing utilization of Internet services and cloud computing by most organizations (both private and public), it is clear that computing is becoming the 5th utility (along with water, electricity, telephony and gas). These technologies are used for almost all types of systems, and the number is increasing, including Critical Infrastructure systems. Even if Critical Infrastructure systems appear not to rely directly on cloud services, there may be hidden inter-dependencies. This is true even for private cloud computing, which seems more secure and reliable. The critical systems can began in some cases with a clear and simple design, but evolved as described by Egan to "rafted" networks. Because they are usually controlled by one or few organizations, even when they are complex systems, their dependencies can be understood. The organization oversees and manages changes. These CI systems have been affected by the introduction of new ICT models like global communications, PCs and the Internet. Even virtualization took more time to be adopted by Critical systems, due to their strategic nature, but once that these technologies have been proven in other areas, at the end they are adopted as well, for different reasons such as costs. A new technology model is happening now based on some previous technologies (virtualization, distributing and utility computing, web and software services) that are offered in new ways and is called cloud computing. The organizations are migrating more services to the cloud; this will have impact in their internal complexity and in the reliability of the systems they are offering to the organization itself and their clients. Not always this added complexity and associated risks to their reliability are seen. As well, when two or more CI systems are interacting, the risks of one can affect the rest, sharing the risks. This work investigates the use of cloud computing by critical systems, and is focused in the dependencies and reliability of these systems. Some examples are presented together with the associated risks. A framework is introduced for analysing the dependability and resilience of a system that relies on cloud services and how to improve them. As part of the framework, the concepts of micro and macro dependability are introduced to explain the internal and external dependability on services supplied by an external cloud. A pharmacovigilance model system has been used for framework validation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short-run forecasting of electricity prices has become necessary for power generation unit schedule, since it is the basis of every profit maximization strategy. In this article a new and very easy method to compute accurate forecasts for electricity prices using mixed models is proposed. The main idea is to develop an efficient tool for one-step-ahead forecasting in the future, combining several prediction methods for which forecasting performance has been checked and compared for a span of several years. Also as a novelty, the 24 hourly time series has been modelled separately, instead of the complete time series of the prices. This allows one to take advantage of the homogeneity of these 24 time series. The purpose of this paper is to select the model that leads to smaller prediction errors and to obtain the appropriate length of time to use for forecasting. These results have been obtained by means of a computational experiment. A mixed model which combines the advantages of the two new models discussed is proposed. Some numerical results for the Spanish market are shown, but this new methodology can be applied to other electricity markets as well

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With recent technological developments within the field of power conditioning and the progressive decrease of incentives for PV electricity in grid-connected markets, new operation modes for PV systems should be explored beyond the traditional maximization of PV electri city feed-in. An example can be found in the domestic sector, where the use of modern PV hybrid systems combin ed with efficient electrical appliances and demand side management strategies can significantly enhance the PV value for the user. This paper presents an active demand side management system able to displace the consumer’s load curve in response to local (PV hybrid system, user) and external conditions (external grid). In this way, th e consumer becomes an “active consumer” that can also cooperate with others and the grid, increasing even more the PV value for the electrical system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grid connected solar plants are a good opportunity for their use for research as a secondary objective. In countries were feed-in tariffs are still active, it is possible to include in the design of the solar plant elements for its use for research. In the case of the solar plant presented here both objectives are covered. The solar plant of this work is formed by PV modules of three different technologies: Multicrystalline, amorphous and CdTe. In one part of the solar plant, the three technologies are working at the same conditions, not only ambient conditions but also similar voltage and current input to the inverters. Both the commercial and the experimental parts of the solar plant have their own independent inverters with their meters but are finally connected to the same meter to inject. In this work we analyse the results for the first year of operation of the experimental solar plant. Productions of three different technologies in exactly the same conditions are compared and presented. According to the results, all the three technologies have conversion efficiencies dropping when the temperature increases. Amorphous module experiences the lesser reduction, whereas the multicrystalline module suffers the most.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Building integrated photovoltaic (BIPV) systems are a relevant application of photovoltaics. In countries belonging to the International Energy Agency countries, 24% of total installed PV power corresponds to BIPV systems. Electricity losses caused by shadows over the PV generator have a significant impact on the performance of BIPV systems, being the major source of electricity losses. This paper presents a methodology to estimate electricity produced by BIPV systems which incorporates a model for shading losses. The proposed methodology has been validated on a one year study with real data from two similar PV systems placed on the south façade of a building belonging to the Technical University of Madrid. This study has covered all weather conditions: clear, partially overcast and fully overcast sky. Results of this study are shown at different time scales, resulting that the errors committed by the best performing model are below 1% and 3% in annual and daily electricity estimation. The use of models which account for the reduced performance at low irradiance levels also improves the estimation of generated electricity.