12 resultados para Efflux de cholestérol
em Universidad Politécnica de Madrid
Resumo:
tThe rate of metabolic processes demanding energy in tree stems changes in relation with prevailing cli-matic conditions. Tree water availability can affect stem respiration through impacts on growth, phloemtransport or maintenance of diverse cellular processes, but little is known on this topic. Here we moni-tored seasonal changes in stem CO2efflux (Fs), radial growth, sap flow and non-structural carbohydrates intrees of Quercus ilex in a Mediterranean forest stand subjected since 2003 to either partial (33%) through-fall exclusion (E) or unchanged throughfall (C). Fsincreased exponentially during the day by an effectof temperature, although sap flow attenuated the increase in Fsduring the day time. Over the year, Fsalso increased exponentially with increasing temperatures, but Fscomputed at a standard temperatureof 15?C (F15s) varied by almost 4-fold among dates. F15swas the highest after periods of stem growth anddecreased as tree water availability decreased, similarly in C and E treatments. The decline in F15swas notlinked to a depletion of soluble sugars, which increased when water stress was higher. The proportionof ecosystem respiration attributed to the stems was highest following stem growth (23.3%) and lowestduring the peak of drought (6.5%). High within-year variability in F15smakes unadvisable to pool annualdata of Fsvs. temperature to model Fsat short time scales (hours to months) in Mediterranean-type for-est ecosystems. We demonstrate that water availability is an important factor governing stem CO2effluxand suggest that trees in Mediterranean environments acclimate to seasonal drought by reducing stemrespiration. Stem respiratory rates do not seem to change after a long-term increase in drought intensity,however.
Resumo:
The ecological intensification of crops is proposed as a solution to the growing demand of agricultural and forest resources, in opposition to intensive monocultures. The introduction of mixed cultures as mixtures between nitrogen fixing species and non nitrogen fixing species intended to increase crop yield as a result of an improvement of the available nitrogen and phosphorus in soil. Relationship between crops have received little attention despite the wide range of advantages that confers species diversity to these systems, such as increased productivity, resilience to disruption and ecological sustainability. Forests and forestry plantations can develop an important role in storing carbon in their tissues, especially in wood which become into durable product. A simplifying parameter to analyze the amount allocated carbon by plantation is the TBCA (total belowground carbon allocation), whereby, for short periods and mature plantations, is admitted as the subtraction between soil carbon efflux and litterfall. Soil respiration depends on a wide range of factors, such as soil temperature and soil water content, soil fertility, presence and type of vegetation, among others. The studied orchard is a mixed forestry plantation of hybrid walnuts(Juglans × intermedia Carr.) for wood and alders (Alnus cordata (Loisel.) Duby.), a nitrogen fixing specie through the actinomycete Frankia alni ((Woronin, 1866) Von Tubeuf 1895). The study area is sited at Restinclières, a green area near Montpellier (South of France). In the present work, soil respiration varied greatly throughout the year, mainly influenced by soil temperature. Soil water content did not significantly influence the response of soil respiration as it was constant during the measurement period and under no water stress conditions. Distance between nearest walnut and measurement was also a highly influential factor in soil respiration. Generally there was a decreasing trend in soil respiration when the distance to the nearest tree increased. It was also analyzed the response of soil respiration according to alder presence and fertilizer management (50 kg N·ha-1·año-1 from 1999 to 2010). None of these treatments significantly influenced soil respiration, although previous studies noticed an inhibition in rates of soil respiration under fertilized conditions and high rates of available nitrogen. However, treatments without fertilization and without alder presence obtained higher respiration rates in those cases with significant differences. The lack of significant differences between treatments may be due to the high coefficient of variation experienced by soil respiration measurements. Finally an asynchronous fluctuation was observed between soil respiration and litterfall during senescence period. This is possibly due to the slowdown in the emission of exudates by roots during senescence period, which are largely related to microbial activity.
Resumo:
A gene encoding a homolog to the cation diffusion facilitator protein DmeF from Cupriavidus metallidurans has been identified in the genome of Rhizobium leguminosarum UPM791. The R. leguminosarum dmeF gene is located downstream of an open reading frame (designated dmeR) encoding a protein homologous to the nickel- and cobalt-responsive transcriptional regulator RcnR from Escherichia coli. Analysis of gene expression showed that the R. leguminosarum dmeRF genes are organized as a transcriptional unit whose expression is strongly induced by nickel and cobalt ions, likely by alleviating the repressor activity of DmeR on dmeRF transcription. An R. leguminosarum dmeRF mutant strain displayed increased sensitivity to Co(II) and Ni(II), whereas no alterations of its resistance to Cd(II), Cu(II), or Zn(II) were observed. A decrease of symbiotic performance was observed when pea plants inoculated with an R. leguminosarum dmeRF deletion mutant strain were grown in the presence of high concentrations of nickel and cobalt. The same mutant induced significantly lower activity levels of NiFe hydrogenase in microaerobic cultures. These results indicate that the R. leguminosarum DmeRF system is a metal-responsive efflux mechanism acting as a key element for metal homeostasis in R. leguminosarum under free-living and symbiotic conditions. The presence of similar dmeRF gene clusters in other Rhizobiaceae suggests that the dmeRF system is a conserved mechanism for metal tolerance in legume endosymbiotic bacteria.
Resumo:
El suelo salino impone un estrés abiótico importante que causa graves problemas en la agricultura ya que la mayoría de los cultivos se ven afectados por la salinidad debido a efectos osmóticos y tóxicos. Por ello, la contaminación y la escasez de agua dulce, la salinización progresiva de tierras y el aumento exponencial de la población humana representan un grave problema que amenaza la seguridad alimentaria mundial para las generaciones futuras. Por lo tanto, aumentar la tolerancia a la salinidad de los cultivos es un objetivo estratégico e ineludible para garantizar el suministro de alimentos en el futuro. Mantener una óptima homeostasis de K+ en plantas que sufren estrés salino es un objetivo importante en el proceso de obtención de plantas tolerantes a la salinidad. Aunque el modelo de la homeostasis de K+ en las plantas está razonablemente bien descrito en términos de entrada de K+, muy poco se sabe acerca de los genes implicados en la salida de K+ o de su liberación desde la vacuola. En este trabajo se pretende aclarar algunos de los mecanismos implicados en la homeostasis de K+ en plantas. Para ello se eligió la briofita Physcomitrella patens, una planta no vascular de estructura simple y de fase haploide dominante que, entre muchas otras cualidades, hacen que sea un modelo ideal. Lo más importante es que no sólo P. patens es muy tolerante a altas concentraciones de Na+, sino que también su posición filogenética en la evolución de las plantas abre la posibilidad de estudiar los cambios claves que, durante el curso de la evolución, se produjeron en las diversas familias de los transportadores de K+. Se han propuesto varios transportadores de cationes como candidatos que podrían tener un papel en la salida de K+ o su liberación desde la vacuola, especialmente miembros de la familia CPA2 que contienen las familias de transportadores KEA y CHX. En este estudio se intenta aumentar nuestra comprensión de las funciones de los transportadores de CHX en las células de las plantas usando P. patens, como ya se ha dicho. En esta especie, se han identificado cuatro genes CHX, PpCHX1-4. Dos de estos genes, PpCHX1 y PpCHX2, se expresan aproximadamente al mismo nivel que el gen PpACT5, y los otros dos genes muestran una expresión muy baja. La expresión de PpCHX1 y PpCHX2 en mutantes de Escherichia coli defectivos en el transporte de K+ restauraron el crecimiento de esta cepa en medios con bajo contenido de K+, lo que viii sugiere que la entrada de K+ es energizada por un mecanismo de simporte con H+. Por otra parte, estos transportadores suprimieron el defecto asociado a la mutación kha1 en Saccharomyces cerevisiae, lo que sugiere que podrían mediar un antiporte en K+/H+. La proteína PpCHX1-GFP expresada transitoriamente en protoplastos de P. patens co-localizó con un marcador de Golgi. En experimentos similares, la proteína PpCHX2-GFP localizó aparentemente en la membrana plasmática y tonoplasto. Se construyeron las líneas mutantes simples de P. patens ΔPpchx1 y ΔPpchx2, y también el mutante doble ΔPpchx2 ΔPphak1. Los mutantes simples crecieron normalmente en todas las condiciones ensayadas y mostraron flujos de entrada normales de K+ y Rb+; la mutación ΔPpchx2 no aumentó el defecto de las plantas ΔPphak1. En experimentos a largo plazo, las plantas ΔPpchx2 mostraron una retención de Rb+ ligeramente superior que las plantas silvestres, lo que sugiere que PpCHX2 promueve la transferencia de Rb+ desde la vacuola al citosol o desde el citosol al medio externo, actuando en paralelo con otros transportadores. Sugerimos que transportadores de K+ de varias familias están involucrados en la homeostasis de pH de orgánulos ya sea mediante antiporte K+/H+ o simporte K+-H+.ix ABSTRACT Soil salinity is a major abiotic stress causing serious problems in agriculture as most crops are affected by it. Moreover, the contamination and shortage of freshwater, progressive land salinization and exponential increase of human population aggravates the problem implying that world food security may not be ensured for the next generations. Thus, a strategic and an unavoidable goal would be increasing salinity tolerance of plant crops to secure future food supply. Maintaining an optimum K+ homeostasis in plants under salinity stress is an important trait to pursue in the process of engineering salt tolerant plants. Although the model of K+ homeostasis in plants is reasonably well described in terms of K+ influx, very little is known about the genes implicated in K+ efflux or release from the vacuole. In this work, we aim to clarify some of the mechanisms involved in K+ homeostasis in plants. For this purpose, we chose the bryophyte plant Physcomitrella patens, a nonvascular plant of simple structure and dominant haploid phase that, among many other characteristics, makes it an ideal model. Most importantly, not only P. patens is very tolerant to high concentrations of Na+, but also its phylogenetic position in land plant evolution opens the possibility to study the key changes that occurred in K+ transporter families during the course of evolution. Several cation transporter candidates have been proposed to have a role in K+ efflux or release from the vacuole especially members of the CPA2 family which contains the KEA and CHX transporter families. We intended in this study to increase our understanding of the functions of CHX transporters in plant cells using P. patens, in which four CHX genes have been identified, PpCHX1-4. Two of these genes, PpCHX1 and PpCHX2, are expressed at approximately the same level as the PpACT5 gene, but the other two genes show an extremely low expression. PpCHX1 and PpCHX2 restored growth of Escherichia coli mutants on low K+-containing media, suggesting they mediated K+ uptake that may be energized by symport with H+. In contrast, these genes suppressed the defect associated to the kha1 mutation in Saccharomyces cerevisiae, which suggest that they might mediate K+/H+ antiport. PpCHX1-GFP protein transiently expressed in P. patens protoplasts co-localized with a Golgi marker. In similar experiments, the PpCHX2-GFP protein appeared to localize to tonoplast and plasma x membrane. We constructed the ΔPpchx1 and ΔPpchx2 single mutant lines, and the ΔPpchx2 ΔPphak1 double mutant. Single mutant plants grew normally under all the conditions tested and exhibited normal K+ and Rb+ influxes; the ΔPpchx2 mutation did not increase the defect of ΔPphak1 plants. In long-term experiments, ΔPpchx2 plants showed a slightly higher Rb+ retention than wild type plants, which suggests that PpCHX2 mediates the transfer of Rb+ from either the vacuole to the cytosol or from the cytosol to the external medium in parallel with other transporters. We suggest that K+ transporters of several families are involved in the pH homeostasis of organelles by mediating either K+/H+ antiport or K+-H+ symport.
Resumo:
Rhizobium leguminosarum (Rl) es una alfa-proteobacteria capaz de establecer una simbiosis diazotrófica con distintas leguminosas. A pesar de la importancia de esta simbiosis en el balance global del ciclo del nitrógeno, muy pocos genomas de rhizobios han sido secuenciados, que aporten nuevos conocimientos relacionados con las características genéticas que contribuyen a importantes procesos simbióticos. Únicamente tres secuencias completas de Rl han sido publicadas: Rl bv. viciae 3841 y dos genomas de Rl bv. trifolii (WSM1325 y WSM2304), ambos simbiontes de trébol. La secuencia genómica de Rlv UPM791 se ha determinado por medio de secuenciación 454. Este genoma tiene un tamaño aproximado de 7.8 Mb, organizado en un cromosoma y 5 replicones extracromosómicos, que incluyen un plásmido simbiótico de 405 kb. Este nuevo genoma se ha analizado en relación a las funciones simbióticas y adaptativas en comparación con los genomas completos de Rlv 3841 y Rl bv. trifolii WSM1325 y WSM2304. Mientras que los plásmidos pUPM791a y b se encuentran conservados, el plásmido simbiótico pUPM791c exhibe un grado de conservación muy bajo comparado con aquellos descritos en las otras cepas de Rl. Uno de los factores implicados en el establecimiento de la simbiosis es el sistema de comunicación intercelular conocido como Quorum Sensing (QS). El análisis del genoma de Rlv UPM791 ha permitido la identificación de dos sistemas tipo LuxRI mediados por señales de tipo N-acyl-homoserina lactonas (AHLs). El análisis mediante HPLC-MS ha permitido asociar las señales C6-HSL, C7-HSL y C8-HSL al sistema rhiRI, codificado en el plásmido simbiótico; mientras que el sistema cinRI, localizado en el cromosoma, produce 3OH-C14:1-HSL. Se ha identificado una tercera sintasa (TraI) codificada en el plásmido simbiótico, pero su regulador correspondiente se encuentra truncado debido a un salto de fase. Adicionalmente, se han encontrado tres reguladores de tipo LuxR-orphan que no presentan una sintasa LuxI asociada. El efecto potencial de las señales tipo AHL se ha estudiado mediante una estrategia de quorum quenching, la cual interfiere con los sistemas de QS de la bacteria. Esta estrategia está basada en la introducción del gen aiiA de Bacillus subtilis, que expresa constitutivamente una enzima lactonasa degradadora de AHLs. Para llevar a cabo el análisis en condiciones simbióticas, se ha desarrollado un sistema de doble marcaje que permite la identificación basado en los marcadores gusA y celB, que codifican para una enzima β–glucuronidasa y una β–galactosidasa termoestable, respectivamente. Los resultados obtenidos indican que Rlv UPM791 predomina sobre la cepa Rlv 3841 para la formación de nódulos en plantas de guisante. La baja estabilidad del plásmido que codifica para aiiA, no ha permitido obtener una conclusión definitiva sobre el efecto de la lactonasa AiiA en competitividad. Con el fin de analizar el significado y la regulación de la producción de moléculas señal tipo AHL, se han generado mutantes defectivos en cada uno de los dos sistemas de QS. Se ha llevado a cabo un análisis detallado sobre la producción de AHLs, formación de biofilm y simbiosis con plantas de guisante, veza y lenteja. El efecto de las deleciones de los genes rhiI y rhiR en Rlv UPM791 es más drástico en ausencia del plásmido pUPM791d. Mutaciones en cinI o cinRIS muestran tanto ausencia de señales, como producción exclusivamente de las de bajo peso molecular, respectivamente, producidas por el sistema rhiRI. Estas mutaciones mostraron un efecto importante en simbiosis. El sistema rhiRI se necesita para un comportamiento simbiótico normal. Además, mutantes cinRIS generaron nódulos blancos e ineficientes, mientras que el mutante cinI fue incapaz de producir nódulos en ninguna de las leguminosas utilizadas. Dicha mutación resultó en la inestabilización del plasmido simbiótico por un mecanismo dependiente de cinI que no ha sido aclarado. En general, los resultados obtenidos indican la existencia de un modelo de regulación dependiente de QS significativamente distinto a los que se han descrito previamente en otras cepas de R. leguminosarum, en las cuales no se había observado ningún fenotipo relevante en simbiosis. La regulación de la producción de AHLs Rlv UPM791 es un proceso complejo que implica genes situados en los plásmidos UPM791c y UPM791d, además de la señal 3-OH-C14:1-HSL. Finalmente, se ha identificado un transportador de tipo RND, homologo a mexAB-oprM de P. aeruginosa e implicado en la extrusión de AHLs de cadena larga. La mutación he dicho transportador no tuvo efectos apreciables sobre la simbiosis. ABSTRACT Rhizobium leguminosarum (Rl) is a soil alpha-proteobacterium that establishes a diazotrophic symbiosis with different legumes. Despite the importance of this symbiosis to the global nitrogen cycling balance, very few rhizobial genomes have been sequenced so far which provide new insights into the genetic features contributing to symbiotically relevant processes. Only three complete sequences of Rl strains have been published: Rl bv. viciae 3841, harboring six plasmids (7.75 Mb) and two Rl bv. trifolii (WSM1325 and WSM2304), both clover symbionts, harboring 5 and 4 plasmids, respectively (7.41 and 6.87 Mb). The genomic sequence of Rlv UPM791 was undertaken by means of 454 sequencing. Illumina and Sanger reads were used to improve the assembly, leading to 17 final contigs. This genome has an estimated size of 7.8 Mb organized in one chromosome and five extrachromosomal replicons, including a 405 kb symbiotic plasmid. Four of these plasmids are already closed, whereas there are still gaps in the smallest one (pUPM791d) due to the presence of insertion elements and repeated sequences, which difficult the assembly. The annotation has been carried out thanks to the Manatee pipeline. This new genome has been analyzed as regarding symbiotic and adaptive functions in comparison to the Rlv 3841 complete genome, and to those from Rl bv. trifolii strains WSM1325 and WSM2304. While plasmids pUPM791a and b are conserved, the symbiotic plasmid pUPM791c exhibited the lowest degree of conservation as compared to those from the other Rl strains. One of the factors involved in the symbiotic process is the intercellular communication system known as Quorum Sensing (QS). This mechanism allows bacteria to carry out diverse biological processes in a coordinate way through the production and detection of extracellular signals that regulate the transcription of different target genes. Analysis of the Rlv UPM791 genome allowed the identification of two LuxRI-like systems mediated by N-acyl-homoserine lactones (AHLs). HPLC-MS analysis allowed the adscription of C6-HSL, C7-HSL and C8-HSL signals to the rhiRI system, encoded in the symbiotic plasmid, whereas the cinRI system, located in the chromosome, produces 3OH-C14:1-HSL, previously described as “bacteriocin small”. A third synthase (TraI) is encoded also in the symbiotic plasmid, but its cognate regulator TraR is not functional due to a fameshift mutation. Three additional LuxR orphans were also found which no associated LuxI-type synthase. The potential effect of AHLs has been studied by means of a quorum quenching approach to interfere with the QS systems of the bacteria. This approach is based upon the introduction into the strains Rl UPM791 and Rl 3841 of the Bacillus subtilis gene aiiA expressing constitutively an AHL-degrading lactonase enzyme which led to virtual absence of AHL even when AiiA-expressing cells were a fraction of the total population. No significant effect of AiiA-mediated AHL removal on competitiveness for growth in solid surface was observed. For analysis under symbiotic conditions we have set up a two-label system to identify nodules produced by two different strains in pea roots, based on the markers gusA and celB, encoding a β–glucuronidase and a thermostable β–galactosidase enzymes, respectively. The results obtained show that Rlv UPM791 outcompetes Rlv 3841 for nodule formation in pea plants, and that the presence of the AiiA plasmid does not significantly affect the relative competitiveness of the two Rlv strains. However, the low stability of the pME6863 plasmid, encoding aiiA, did not lead to a clear conclusion about the AiiA lactonase effect on competitiveness. In order to further analyze the significance and regulation of the production of AHL signal molecules, mutants deficient in each of the two QS systems were constructed. A detailed analysis of the effect of these mutations on AHL production, biofilm formation and symbiosis with pea, vetch and lentil plants has been carried out. The effect of deletions on Rlv UPM791 rhiI and rhiR genes is more pronounced in the absence of plasmid pUPM791d, as no signal is detected in UPM791.1, lacking this plasmid. Mutations in cinI or cinRIS show either no signals, or only the small ones produced by the rhiRI system, suggesting that cinR might be regulating the rhiRI system. These mutations had a strong effect on symbiosis. Analysis of rhi mutants revealed that rhiRI system is required for normal symbiotic performance, as a drastic reduction of symbiotic fitness is observed when rhiI is deleted, and rhiR is essential for nitrogen fixation in the absence of plasmid pUPM791d. Furthermore, cinRIS mutants resulted in white and inefficient nodules, whereas cinI mutant was unable to form nodules on any legume tested. The latter mutation is associated to the instabilization of the symbiotic plasmid through a mechanism still uncovered. Overall, the results obtained indicate the existence of a model of QS-dependent regulation significantly different to that previously described in other R. leguminosarum strains, where no relevant symbiotic phenotype had been observed. The regulation of AHL production in Rlv UPM791 is a complex process involving the symbiotic plasmid (pUPM791c) and the smallest plasmid (pUPM791d), with a key role for the 3-OH-C14:1-HSL signal. Finally, we made a search for potential AHL transporters in Rlv UPM791 genome. These signals diffuse freely across membranes, but in the case of the long-chain AHLs an active efflux system might be required, as it has been described for C12-HSL in the case of Pseudomonas aeruginosa. We have identified a putative AHL transporter of the RND family homologous to P. aeruginosa mexAB-oprM. A mutant strain deficient in this transporter has been generated, and TLC analysis shows absence of 3OH-C14:1-HSL in its supernatant. This deficiency was complemented by the reintroduction of an intact copy of the genes via plasmid transfer. The mutation in mexAB genes had no significant effects on the symbiotic performance of R. leguminosarum bv. viciae.
Resumo:
Los suelos ultramáficos, que poseen elevadas concentraciones de níquel, cobalto y cromo de manera natural, son fuente de bacterias resistentes a altas concentraciones de metales. Se realizó la caracterización físico-química de seis suelos ultramáficos del suroeste europeo, seleccionándose un suelo de la región de Gorro, Italia, como el más adecuado para aislar bacterias endosimbióticas resistentes a metales. A partir de plantas-trampa de guisante y lenteja inoculados con suspensiones de ese suelo, se obtuvieron 58 aislados de Rhizobium leguminosarum bv. viciae (Rlv) que fueron clasificados en 13 grupos según análisis de PCR-RAPDs. Se determinó la resistencia a cationes metálicos [Ni(II), Co(II), Cu(II), Zn(II)] de una cepa representante de cada grupo, así como la secuencia de los genomas de las cepas que mostraron altos niveles (UPM1137 y UPM1280) y bajos niveles (UPM1131 y UPM1136) de tolerancia a metales. Para identificar mecanismos de resistencia a metales se realizó una mutagénesis al azar en dicha cepa mediante la inserción de un minitransposón. El análisis de 4313 transconjugantes permitió identificar 14 mutantes que mostraron una mayor sensibilidad a Ni(II) que la cepa silvestre. Se determinó el punto de inserción del minitransposón en todos ellos y se analizaron en más detalle dos de los mutantes (D2250 y D4239). En uno de los mutantes (D2250), el gen afectado codifica para una proteína que presenta un 44% de identidad con dmeF (divalent efflux protein) de Cupriavidus metallidurans. Cadena arriba de dmeF se identificó un gen que codifica una proteína con un 39% de identidad con el regulador RcnR de Escherichia coli. Se decidió nombrar a este sistema dmeRF, y se generó un mutante en ambos genes en la cepa Rlv SPF25 (Rlv D15). A partir de experimentos de análisis fenotípico y de regulación se pudo demostrar que el sistema dmeRF tiene un papel relevante en la resistencia a Ni(II) y sobre todo a Co(II) en células en vida libre y en simbiosis con plantas de guisante. Ambos genes forman un operón cuya expresión se induce en respuesta a la presencia de Ni(II) y Co(II). Este sistema se encuentra conservado en distintas especies del género Rhizobium como un mecanismo general de resistencia a níquel y cobalto. Otro de los mutantes identificados (D4239), tiene interrumpido un gen que codifica para un regulador transcripcional de la familia AraC. Aunque inicialmente fue identificado por su sensibilidad a níquel, experimentos posteriores demostraron que su elevada sensibilidad a metales era debida a su sensibilidad al medio TY, y más concretamente a la triptona presente en el medio. En otros medios de cultivo el mutante no está afectado específicamente en su tolerancia a metales. Este mutante presenta un fenotipo simbiótico inusual, siendo inefectivo en guisantes y efectivo en lentejas. Análisis de complementación y de mutagénesis dirigida sugieren que el fenotipo de la mutación podría depender de otros factores distintos del gen portador de la inserción del minitransposón. ABSTRACT Ultramafic soils, having naturally high concentrations of nickel, cobalt and chrome, are potential sources of highly metal-resistant bacteria. A physico-chemical characterization of six ultramafic soils from the European southwest was made. A soil from Gorro, Italy, was chosen as the most appropriated for the isolation of heavy-metal-resistant endosymbiotic bacteria. From pea and lentil trap plants inoculated with soil suspensions, 58 isolates of Rhizobium leguminosarum bv. viciae (Rlv) were obtained and classified into 13 groups based on PCR-RAPDs analysis. The resistance to metallic cations [Ni(II), Co(II), Cu(II), Zn(II)] was analyzed in a representative strain of each group. From the results obtained in the resistance assays, the Rlv UPM1137 strain was selected to identify metal resistance mechanism. A random mutagenesis was made in UPM1137 by using minitransposon insertion. Analysis of 4313 transconjugants allowed to identify 14 mutants with higher sensitivity to Ni(II) than the wild type strain. The insertion point of the minitransposon was determined in all of them, and two mutants (D2250 and D4239) were studied in more detail. In one of the mutants (D2250), the affected gene encodes a protein with 44% identity in compared with DmeF (divalent efflux protein) from Cupriavidus metallidurans. Upstream R. leguminosarum dmeF, a gene encoding a protein with 39% identity with RcnR regulator from E. coli was identified. This protein was named DmeR. A mutant with both genes in the dmeRF deleted was generated and characterized in Rlv SPF25 (Rlv D15). From phenotypic and regulation analysis it was concluded that the dmeRF system is relevant for Ni(II) and specially Co(II) tolerance in both free living and symbiotic forms of the bacteria. This system is conserved in different Rhizobium species like a general mechanism for nickel and cobalt resistance. Other of the identified mutants (D4239) contains the transposon insert on a gene that encodes for an AraC-like transcriptional regulator. Although initially this mutant was identified for its nickel sensitivity, futher experiments demonstrated that its high metal sensitivity is due to its sensitivity to the TY medium, specifically for the tryptone. In other media the mutant is not affected specifically in their tolerance to metals. This mutant showed an unusual symbiotic phenotype, being ineffective in pea and effective in lentil. Complementation analysis and directed mutagenesis suggest that the mutation phenotype could depend of other factors different from the insertion minitransposon gene.
Resumo:
Triticum aestivum aluminum-activated malate transporter (TaALMT1) is the founding member of a unique gene family of anion transporters (ALMTs) that mediate the efflux of organic acids. A small sub-group of root-localized ALMTs, including TaALMT1, is physiologically associated with in planta aluminum (Al) resistance. TaALMT1 exhibits significant enhancement of transport activity in response to extracellular Al. In this study, we integrated structure–function analyses of structurally altered TaALMT1 proteins expressed in Xenopus oocytes with phylogenic analyses of the ALMT family. Our aim is to re-examine the role of protein domains in terms of their potential involvement in the Al-dependent enhancement (i.e. Al-responsiveness) of TaALMT1 transport activity, as well as the roles of all its 43 negatively charged amino acid residues. Our results indicate that the N-domain, which is predicted to form the conductive pathway, mediates ion transport even in the absence of the C-domain. However, segments in both domains are involved in Al3+ sensing. We identified two regions, one at the N-terminus and a hydrophobic region at the C-terminus, that jointly contribute to the Al-response phenotype. Interestingly, the characteristic motif at the N-terminus appears to be specific for Al-responsive ALMTs. Our study highlights the need to include a comprehensive phylogenetic analysis when drawing inferences from structure–function analyses, as a significant proportion of the functional changes observed for TaALMT1 are most likely the result of alterations in the overall structural integrity of ALMT family proteins rather than modifications of specific sites involved in Al3+ sensing.
Resumo:
A member of the Cation Diffusion Facilitator (CDF) family with high sequence similarity to DmeF (Divalent metal efflux) from Cupridavirus metallidurans was identified in Rhizobium leguminosarum bv. viciae UPM1137. The R. leguminosarum dmeF mutant strain was highly sensitive to Co2+ and moderately sensitive to Ni2+, but its tolerance to other metals such as Zn2+, Cu2+ or Mn2+ was unaffected. An open reading frame located upstream of R. leguminosarum dmeF, designated dmeR, encodes a protein homologous to the nickel and cobalt regulator RcnR from E.coli. Expression of the dmeRF operon was induced by nickel and cobalt ions in free-living cells, likely by alleviating DmeR-mediated transcriptional repression of the operon.
Resumo:
Transition metals such as Fe, Cu, Mn, Ni, or Co are essential nutrients, as they are constitutive elements of a significant fraction of cell proteins. Such metals are present in the active site of many enzymes, and also participate as structural elements in different proteins. From a chemical point of view, metals have a defined order of affinity for binding, designated as the Irving-Williams series (Irving and Williams, 1948) Mg2+ menor que Mn2+ menor que Fe2+ menor que Co2+ menor que Ni2+ menor que Cu2+mayor queZn2+ Since cells contain a high number of different proteins harbouring different metal ions, a simplistic model in which proteins are synthesized and metals imported into a ?cytoplasmic soup? cannot explain the final product that we find in the cell. Instead we need to envisage a complex model in which specific ligands are present in definite amounts to leave the right amounts of available metals and protein binding sites, so specific pairs can bind appropriately. A critical control on the amount of ligands and metal present is exerted through specific metal-responsive regulators able to induce the synthesis of the right amount of ligands (essentially metal binding proteins), import and efflux proteins. These systems are adapted to establish the metal-protein equilibria compatible with the formation of the right metalloprotein complexes. Understanding this complex network of interactions is central to the understanding of metal metabolism for the synthesis of metalloenzymes, a key topic in the Rhizobium-legume symbiosis. In the case of the Rhizobium leguminosarum bv viciae (Rlv) UPM791 -Pisum sativum symbiotic system, the concentration of nickel in the plant nutrient solution is a limiting factor for hydrogenase expression, and provision of high amounts of this element to the plant nutrient solution is required to ensure optimal levels of enzyme synthesis (Brito et al., 1994).
Resumo:
Nickel, like other transition metals, can be toxic to cells even at moderate concentration (low microM range) by displacing essential metals from their native binding sites or by generating reactive oxygen species that cause oxidative DNA damage. For this reason, cells have evolved mechanisms to deal with excess nickel. Efflux systems include members of the Resistance-Nodulation-cell Division (RND) protein family, P-type ATPases, cation diffusion facilitators (CDF) and other resistance factors. Nickel-specific exporters have been characterized in Cupravidus metallidurans, Helicobacter pylori, Achromobacter xylosoxidans, Serratia marcenses and Escherichia coli.
Resumo:
The monocarboxylate transporter (MCT) family member MCT1 transports lactate into and out of myocytes. Oxidative cells import lactate through MCT1 as a substrate, being the role of MCT1 in glycolysis-derived lactate efflux less clear. MCT1 T1470A polymorphism (rs1049434), which has been related with lactate metabolism and sports specialty 1, 2, could be an influencing factor for exercise adherence. Therefore the aim of this study was to relate the adherence to different training modalities with the T1470A MCT1 polymorphism in overweight and obese men following a weight loss program (WLP).
Resumo:
Quercus pyrenaica es una especie rebrotadora de raíz intensa e históricamente aprovechada en monte bajo para la obtención de leñas, carbón y pastos. Debido al éxodo rural y a la aparición de nuevas fuentes energéticas, este aprovechamiento fue abandonado en la década de 1970. Desde entonces, las bajas producciones de madera y bellota y el puntisecado de los pies evidencian el generalizado estancamiento de estas masas. Uno de los mayores retos actuales de la selvicultura en el ámbito mediterráneo es encontrar usos alternativos para estos montes abandonados, siendo la conversión a monte alto una de las alternativas preferidas. Se han realizado resalveos de conversión, sin embrago, éstos se aplican sin un conocimiento integral de las causas de la degradación. En esta tesis doctoral, estudiamos un hipotético desequilibrio entre la parte radical y la parte aérea (R:S) de las cepas de rebollo como causa subyacente de su decaimiento. En una parcela experimental, aprovechada al menos desde el siglo XII, se realizaron análisis genéticos a priori para elucidar la estructura genética del rodal, y así estudiar la influencia del tamaño clonal en el funcionamiento de las cepas. Las cepas de mayor tamaño presentaron un menor crecimiento diametral de sus pies, así como mayores tasas de respiración radical, estimadas a partir de flujos internos de CO2 a través del xilema (FT) y de los flujos de CO2 del suelo. Estos resultados sugieren que el desequilibrio R:S aumenta con el tamaño clonal, dado que la eliminación periódica de órganos aéreos, al mismo tiempo que las raíces permanecen intactas, da lugar a un gran desarrollo del sistema radical que consume gran parte de los carbohidratos no estructurales (NSC) en respiración de mantenimiento, comprometiendo así el desarrollo de órganos aéreos. Se excavaron y pesaron dos cepas compuestas por cuatro y ocho pies, las cuales mostraron ratios R:S (0.5 y 1, respectivamente) superiores a los registrados en pies de origen sexual. Al igual que en otras especies rebrotadoras de raíz, se observaron altas concentraciones de NSC en las raíces (> 20% en primavera) y una gran proporción de albura en el sistema radical (52%) que alberga una notable reserva de NSC (87 kg en la cepa de mayor tamaño). En el sistema radical de dicha cepa, estimada mediante dataciones radiocarbónicas en 550 años de edad, se contaron 248 uniones radicales. La persistencia de sistemas radicales grandes, viejos, y altamente interconectados sugiere que la gran cantidad de recursos almacenados y consumidos en las raíces compensan un pobre desarrollo aéreo con una alta resiliencia vegetativa. Para un mejor entendimiento de los balances de carbono y del agotamiento de NSC en las cepas de rebollo, se midieron los flujos internos y externos de CO2 en troncos y los flujos de CO2 del suelo, y se estimó la respiración de órganos aéreos (RS) y subterráneos (RR). Estacionalmente, RS y RR reflejaron las dinámicas de flujo de savia y de crecimiento del tronco, y estuvieron determinadas principalmente por los flujos externos de CO2, dada la escasa contribución de FT a RS y RR (< 10% y < 2%, respectivamente). En una escala circadiana, la contribución de FT a RS aumentó hasta un 25% en momentos de alta transpiración. Las bajas concentraciones de CO2 en el xilema ([CO2] hasta un 0.11%) determinaron comparativamente unos bajos FT, probablemente causados por una limitada respiración del xilema y una baja resistencia a la difusión radial del CO2 impuestos por la sequía estival. Los pulsos de [CO2] observados tras las primeras lluvias de otoño apoyan esta idea. A lo largo del periodo vegetativo, el flujo medio de CO2 procedente del suelo (39 mol CO2 day-1) fue el mayor flujo respiratorio, tres y cuatro veces superior a RS (12 mol CO2 day-1) y RR (8-9 mol CO2 day-1), respectivamente. Ratios RR/RS menores que la unidad evidencian un importante peso de la respiración aérea como sumidero de carbono adicional. Finalmente, se ensayó el zanjado de raíces y el anillamiento de troncos como tratamientos selvícolas alternativos con el objetivo de aumentar las reservas de NSC en los troncos de las cepas. Los resultados preliminares desaconsejan el zanjado de raíces por el alto coste derivado posiblemente de la cicatrización de las heridas. El anillado de troncos imposibilitó el transporte de NSC a las raíces y aumentó la concentración de almidón por encima de la zona anillada, mientras que sistema radical se mantiene por los pies no anillados de la cepa. Son necesarias más mediciones y datos adicionales para comprobar el mantenimiento de esta respuesta positiva a largo plazo. Para concluir, destacamos la necesidad de estudios multidisciplinares que permitan una comprensión integral de la degradación de los rebollares ibéricos para poder aplicar a posteriori una gestión adecuada en estos montes bajos abandonados. ABSTRACT Quercus pyrenaica is a vigorous root-resprouting species intensively and historically coppiced for firewood, charcoal and woody pastures. Due to the rural exodus and the appearance of new energy sources, coppicing was abandoned towards 1970. Since then, tree overaging has resulted in stand stagnation displayed by slow stem growth, branch dieback, and scarce acorn production. The urgent need to find new alternative uses for abandoned coppices is recognized as one of the biggest challenges which currently faces Mediterranean silviculture; conversion into high forest by thinning is one of the preferred alternatives. For this aim, thinning has been broadly applied and seldom tested, although without a comprehensive understanding of the causes of stand stagnation. In this PhD study, we test the hypothesis of an imbalance between above- and below-ground organs, result of long term coppicing, as the underlying cause of Q. pyrenaica decay. In an experimental plot coppiced since at least the 12th century, genetic analyses were performed a priori to elucidate inconspicuous clonal structure of Q. pyrenaica to evaluate how clonal size affects the functioning of these multi-stemmed trees. Clonal size negatively affected diametric stem growth, whereas root respiration rates, measured by internal fluxes of CO2 through xylem (FT) and soil CO2 efflux, increased with clonal size. These results suggest root-to-shoot (R:S) imbalance intensifying with clonal size: periodic removal of aboveground organs whilst belowground organs remain undisturbed may have led to massive root systems which consume a great proportion of non-structural carbohydrates (NSC) for maintenance respiration, thus constraining aboveground performance. Furthermore, excavation of two multi-stemmed trees, composed by four and eight stems, revealed R:S ratios (0.5 and 1, respectively) greater than those reported for sexually regenerated trees. Moreover, as similarly observed in several root-resprouting species, NSC allocation to roots was favored ([NSC] > 20% in spring): a large proportion of sapwood maintained throughout the root system (52%) stored a remarkable NSC pool of 87 kg in the case of the largest clone. In this root system of the eight-stemmed tree, 248 root connections were counted and, by radiocarbon dating, its age was estimated to be 550-years-old. Persistence of massive, old and highly interconnected root systems suggests that enhanced belowground NSC storage and consumption reflects a trade-off between vegetative resilience and aboveground development. For a better understanding of tree carbon budget and the potential role of carbon starvation in Q. pyrenaica decay, internal and external stem CO2 fluxes and soil CO2 effluxes were monitored to evaluate respiratory costs above- and below-ground. On a seasonal scale, stem and root respiration (RS and RR) mirrored sap flow and stem growth dynamics. Respiration was determined to the greatest extent by external fluxes of CO2 to the atmosphere or soil, since FT accounted for a low proportion of RS and RR (< 10% and < 2%, respectively). On a diel scale, the contribution of FT to RS increased up to 25% at high transpiration rates. Comparatively low FT was determined by the low concentration of xylem CO2 registered ([CO2] as low as 0.11%), likely as a consequence of constrained xylem respiration and reduced resistance to CO2 radial diffusion imposed by summer drought. Xylem [CO2] pulses following first autumn rains support this idea. Averaged over the growing season, soil CO2 efflux was the greatest respiratory flux (39 mol CO2 day-1), three and four times greater than RS (12 mol CO2 day-1) and RR (8-9 mol CO2 day-1), respectively. Ratios of RR/RS below one evidence an additional and important weight of aboveground respiration as a tree carbon sink. Finally, root trenching and stem girdling were tested as complimentary treatments to thinning as a means to improve carbon reserves in stems of clonal trees. Preliminary results discouraged root trenching due to the high cost likely incurred for wound closure. Stem girdling successfully blocked NSC translocation downward, increasing starch concentrations above the girdled zone whilst the root system is fed by non-girdled stems within the clone. Further measurements and ancillary data are necessary to verify that this positive effect hold over time. To conclude, the need of multidisciplinary approaches for an integrative understanding on the functioning of abandoned Q pyrenaica coppices is highlighted for an appropriate management of these stands.